Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Neural Regen Res ; 17(1): 210-216, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100458

RESUMO

In Alzheimer's disease and ischemic stroke, intranasal insulin can act as a neuroprotective agent. However, whether intranasal insulin has a neuroprotective effect in intracerebral hemorrhage and its potential mechanisms remain poorly understood. In this study, a mouse model of autologous blood-induced intracerebral hemorrhage was treated with 0.5, 1, or 2 IU insulin via intranasal delivery, twice per day, until 24 or 72 hours after surgery. Compared with saline treatment, 1 IU intranasal insulin treatment significantly reduced hematoma volume and brain edema after cerebral hemorrhage, decreased blood-brain barrier permeability and neuronal degeneration damage, reduced neurobehavioral deficits, and improved the survival rate of mice. Expression levels of p-AKT and p-GSK3ß were significantly increased in the perihematoma tissues after intranasal insulin therapy. Our findings suggest that intranasal insulin therapy can protect the neurological function of mice after intracerebral hemorrhage through the AKT/GSK3ß signaling pathway. The study was approved by the Ethics Committee of the North Sichuan Medical College of China (approval No. NSMC(A)2019(01)) on January 7, 2019.

2.
Fundam Clin Pharmacol ; 34(1): 4-10, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31241783

RESUMO

Emerging epidemiological and preclinical studies have focused on statins and mevalonate pathway to identify potential therapeutic target and clarify the underlying mechanism of the anti-neoplastic effects. Reductions of mevalonate or isoprenoids, caused by statins, would further decrease the isoprenylation of Rho GTPases which is the crucial step for Rho GTPases to anchor on inner cellular membrane. Following anchoring, activated Rho GTPases can mediate a series of cellular activities such as cytoskeleton reprogramming, front-rear polarity, and cell-ECM adhesion. These changes not only facilitate tumor cell detachment and migration but also bring great mechanical changes to directly activate YAP, the major nuclear mechanotransducer, to translocate into nucleus. Recently, statins have been identified as potent inhibitors of YAP. Once entering nucleus, YAP would combine TEADs to promote the transcription of about 100 genes, which are involved in cell proliferation, cell cycle regulation, stemness, invasion, and metastasis. Besides, statins are able to promote the degradation of misfolded mutant p53 (mutp53), which is an oncogene in a variety of human malignancies. Reduction in mevalonate-5-phosphate (MVP), also induced by statins, would impair the stability of DNAJA1-mutp53 complex; then, elevated C terminus of Hsc70-interacting protein (CHIP) mediates the nuclear export and degradation of misfolded mutp53 through ubiquitin-proteasome pathway. It is worth noted that YAP, mutp53, and mevalonate pathway form two positive feedback loops. It is reasonable to believe that Rho GTPases, YAP, and mutp53 are determinants for statins as anti-cancer agents: tumor cells harboring mutp53 and nuclear-located YAP would be more sensitive to statins.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Humanos , Neoplasias/genética , Neoplasias/patologia , Dobramento de Proteína , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Sinalização YAP , Proteínas rho de Ligação ao GTP/metabolismo
3.
Front Neurosci ; 14: 181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210752

RESUMO

RNA-binding proteins (RBPs) have been shown to be involved in posttranscriptional regulation, which plays an important role in the pathophysiology of intracerebral hemorrhage (ICH). Peroxiredoxin 1 (Prdx1), an RBP, plays an important role in regulating inflammation and apoptosis. On the basis that inflammation and apoptosis may contribute to ICH-induced brain injury, in this study, we used ICH models coupled with in vitro experiments, to investigate the role and mechanism of Prdx1 in regulating inflammation and apoptosis by acting as an RBP after ICH. We first found that Prdx1 was significantly up-regulated in response to ICH-induced brain injury and was mainly expressed in astrocytes and microglia in ICH rat brains. After overexpressing Prdx1 by injecting adeno-associated virus (AAV) into the striatum of rats at 3 weeks, we constructed ICH models and found that Prdx1 overexpression markedly reduced inflammation and apoptosis after ICH. Furthermore, RNA immunoprecipitation combined with high-throughput sequencing (RIP-seq) in vitro revealed that Prdx1 affects the stability of inflammation- and apoptosis-related mRNA, resulting in the inhibition of inflammation and apoptosis. Finally, overexpression of Prdx1 significantly alleviated the symptoms and mortality of rats subjected to ICH. Our results show that Prdx1 reduces ICH-induced brain injury by targeting inflammation- and apoptosis-related mRNA stability. Prdx1 may be an improved therapeutic target for alleviating the brain injury caused by ICH.

4.
Biochemistry ; 45(25): 7834-43, 2006 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-16784235

RESUMO

Prokaryotic DNA repair nucleases are useful reagents for detecting DNA lesions. UvrABC endonuclease, encoded by the UvrA, UvrB, and UvrC genes can incise DNA containing bulky nucleotide adducts and intrastrand cross-links. UvrA, UvrB, and UvrC were cloned from Bacillus caldotenax (Bca)and UvrC from Thermatoga maritima (Tma), and recombinant proteins were overexpressed in and purified from Escherichia coli. Incision activities of UvrABC composed of all Bca-derived subunits (UvrABC(Bca)) and an interspecies combination UvrABC composed of Bca-derived UvrA and UvrB and Tma-derived UvrC (UvrABC(Tma)) were compared on benoz[a]pyrene-7,8-dihyrodiol-9,10-epoxide (BPDE)-adducted substrates. Both UvrABC(Bca) and UvrABC(Tma) specifically incised both BPDE-adducted plasmid DNAs and site-specifically modified 50-bp oligonucleotides containing a single (+)-trans- or (+)-cis-BPDE adduct. Incision activity was maximal at 55-60 degrees C. However, UvrABC(Tma) was more robust than UvrABC(Bca) with 4-fold greater incision activity on BPDE-adducted oligonucleotides and 1.5-fold greater on [(3)H]BPDE-adducted plasmid DNAs. Remarkably, UvrABC(Bca) incised only at the eighth phosphodiester bond 5' to the BPDE-modified guanosine. In contrast, UvrABC(Tma) performed dual incision, cutting at both the fifth phosphodiester bond 3' and eighth phosphodiester bond 5' from BPDE-modified guanosine. BPDE adduct stereochemistry influenced incision activity, and cis adducts on oligonucleotide substrates were incised more efficiently than trans adducts by both UvrABC(Bca) and UvrABC(Tma). UvrAB-DNA complex formation was similar with (+)-trans- and (+)-cis-BPDE-adducted substrates, suggesting that UvrAB binds both adducts equally and that adduct configuration modifies UvrC recognition of the UvrAB-DNA complex. The dual incision capabilities and higher incision activity of UvrABC(Tma) make it a robust tool for DNA adduct studies.


Assuntos
7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , Bacillus/enzimologia , Adutos de DNA/metabolismo , Reparo do DNA/fisiologia , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Thermotoga maritima/enzimologia , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/química , Sequência de Aminoácidos , Adutos de DNA/química , DNA Helicases/genética , DNA Helicases/metabolismo , Endodesoxirribonucleases/genética , Estabilidade Enzimática , Proteínas de Escherichia coli/genética , Temperatura Alta , Dados de Sequência Molecular , Plasmídeos/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA