Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Bioinformatics ; 40(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38688661

RESUMO

MOTIVATION: Genome partitioning of quantitative genetic variation is useful for dissecting the genetic architecture of complex traits. However, existing methods, such as Haseman-Elston regression and linkage disequilibrium score regression, often face limitations when handling extensive farm animal datasets, as demonstrated in this study. RESULTS: To overcome this challenge, we present MPH, a novel software tool designed for efficient genome partitioning analyses using restricted maximum likelihood. The computational efficiency of MPH primarily stems from two key factors: the utilization of stochastic trace estimators and the comprehensive implementation of parallel computation. Evaluations with simulated and real datasets demonstrate that MPH achieves comparable accuracy and significantly enhances convergence, speed, and memory efficiency compared to widely used tools like GCTA and LDAK. These advancements facilitate large-scale, comprehensive analyses of complex genetic architectures in farm animals. AVAILABILITY AND IMPLEMENTATION: The MPH software is available at https://jiang18.github.io/mph/.


Assuntos
Variação Genética , Software , Animais , Genoma , Locos de Características Quantitativas , Funções Verossimilhança , Desequilíbrio de Ligação , Genômica/métodos
2.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38268487

RESUMO

MOTIVATION: Utilizing both purebred and crossbred data in animal genetics is widely recognized as an optimal strategy for enhancing the predictive accuracy of breeding values. Practically, the different genetic background among several purebred populations and their crossbred offspring populations limits the application of traditional prediction methods. Several studies endeavor to predict the crossbred performance via the partial relationship, which divides the data into distinct sub-populations based on the common genetic background, such as one single purebred population and its corresponding crossbred descendant. However, this strategy makes prediction inaccurate due to ignoring half of the parental information of crossbreed animals. Furthermore, dominance effects, although playing a significant role in crossbreeding systems, cannot be modeled under such a prediction model. RESULTS: To overcome this weakness, we developed a novel multi-breed single-step model using metafounders to assess ancestral relationships across diverse breeds under a unified framework. We proposed to use multi-breed dominance combined relationship matrices to model additive and dominance effects simultaneously. Our method provides a straightforward way to evaluate the heterosis of crossbreeds and the breeding values of purebred parents efficiently and accurately. We performed simulation and real data analyses to verify the potential of our proposed method. Our proposed model improved prediction accuracy under all scenarios considered compared to commonly used methods. AVAILABILITY AND IMPLEMENTATION: The software for implementing our method is available at https://github.com/CAU-TeamLiuJF/MAGE.


Assuntos
Genoma , Hibridização Genética , Animais , Genômica/métodos , Simulação por Computador , Software , Modelos Genéticos , Genótipo , Polimorfismo de Nucleotídeo Único , Fenótipo
3.
Bioinformatics ; 39(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897019

RESUMO

MOTIVATION: The amount of genomic data is increasing exponentially. Using many genotyped and phenotyped individuals for genomic prediction is appealing yet challenging. RESULTS: We present SLEMM (short for Stochastic-Lanczos-Expedited Mixed Models), a new software tool, to address the computational challenge. SLEMM builds on an efficient implementation of the stochastic Lanczos algorithm for REML in a framework of mixed models. We further implement SNP weighting in SLEMM to improve its predictions. Extensive analyses on seven public datasets, covering 19 polygenic traits in three plant and three livestock species, showed that SLEMM with SNP weighting had overall the best predictive ability among a variety of genomic prediction methods including GCTA's empirical BLUP, BayesR, KAML, and LDAK's BOLT and BayesR models. We also compared the methods using nine dairy traits of ∼300k genotyped cows. All had overall similar prediction accuracies, except that KAML failed to process the data. Additional simulation analyses on up to 3 million individuals and 1 million SNPs showed that SLEMM was advantageous over counterparts as for computational performance. Overall, SLEMM can do million-scale genomic predictions with an accuracy comparable to BayesR. AVAILABILITY AND IMPLEMENTATION: The software is available at https://github.com/jiang18/slemm.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Feminino , Animais , Bovinos , Teorema de Bayes , Genômica/métodos , Genótipo , Fenótipo , Modelos Genéticos
4.
J Dairy Sci ; 107(5): 3032-3046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38056567

RESUMO

This study leveraged a growing dataset of producer-recorded phenotypes for mastitis, reproductive diseases (metritis and retained placenta), and metabolic diseases (ketosis, milk fever, and displaced abomasum) to investigate the potential presence of inbreeding depression for these disease traits. Phenotypic, pedigree, and genomic information were obtained for 354,043 and 68,292 US Holstein and Jersey cows, respectively. Total inbreeding coefficients were calculated using both pedigree and genomic information; the latter included inbreeding estimates obtained using a genomic relationship matrix and runs of homozygosity. We also generated inbreeding coefficients based on the generational inbreeding for recent and old pedigree inbreeding, for different run-of-homozygosity length classes, and for recent and old homozygous-by-descent segment-based inbreeding. Estimates on the liability scale revealed significant evidence of inbreeding depression for reproductive-disease traits, with an increase in total pedigree and genomic inbreeding showing a notable effect for recent inbreeding. However, we found inconsistent evidence for inbreeding depression for mastitis or any metabolic diseases. Notably, in Holsteins, the probability of developing displaced abomasum decreased with inbreeding, particularly for older inbreeding. Estimates of disease probability for cows with low, average, and high inbreeding levels did not significantly differ across any inbreeding coefficient and trait combination, indicating that although inbreeding may affect disease incidence, it likely plays a smaller role compared with management and environmental factors.

5.
BMC Genomics ; 24(1): 628, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865759

RESUMO

BACKGROUND: The survival and fertility of heifers are critical factors for the success of dairy farms. The mortality of heifers poses a significant challenge to the management and profitability of the dairy industry. In dairy farming, achieving early first calving of heifers is also essential for optimal productivity and sustainability. Recently, Council on Dairy Cattle Breeding (CDCB) and USDA have developed new evaluations of heifer health and fertility traits. However, the genetic basis of these traits has yet to be thoroughly studied. RESULTS: Leveraging the extensive U.S dairy genomic database maintained at CDCB, we conducted large-scale GWAS analyses of two heifer traits, livability and early first calving. Despite the large sample size, we found no major QTL for heifer livability. However, we identified a major QTL in the bovine MHC region associated with early first calving. Our GO analysis based on nearby genes detected 91 significant GO terms with a large proportion related to the immune system. This QTL in the MHC region was also confirmed in the analysis of 27 K bull with imputed sequence variants. Since these traits have few major QTL, we evaluated the genome-wide distribution of GWAS signals across different functional genomics categories. For heifer livability, we observed significant enrichment in promotor and enhancer-related regions. For early calving, we found more associations in active TSS, active Elements, and Insulator. We also identified significant enrichment of CDS and conserved variants in the GWAS results of both traits. By linking GWAS results and transcriptome data from the CattleGTEx project via TWAS, we detected four and 23 significant gene-trait association pairs for heifer livability and early calving, respectively. Interestingly, we discovered six genes for early calving in the Bovine MHC region, including two genes in lymph node tissue and one gene each in blood, adipose, hypothalamus, and leukocyte. CONCLUSION: Our large-scale GWAS analyses of two heifer traits identified a major QTL in the bovine MHC region for early first calving. Additional functional enrichment and TWAS analyses confirmed the MHC QTL with relevant biological evidence. Our results revealed the complex genetic basis of heifer health and fertility traits and indicated a potential connection between the immune system and reproduction in cattle.


Assuntos
Estudo de Associação Genômica Ampla , Reprodução , Bovinos/genética , Animais , Feminino , Masculino , Estudo de Associação Genômica Ampla/veterinária , Fertilidade/genética , Genoma , Fenótipo
6.
Genome Res ; 30(5): 790-801, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32424068

RESUMO

By uniformly analyzing 723 RNA-seq data from 91 tissues and cell types, we built a comprehensive gene atlas and studied tissue specificity of genes in cattle. We demonstrated that tissue-specific genes significantly reflected the tissue-relevant biology, showing distinct promoter methylation and evolution patterns (e.g., brain-specific genes evolve slowest, whereas testis-specific genes evolve fastest). Through integrative analyses of those tissue-specific genes with large-scale genome-wide association studies, we detected relevant tissues/cell types and candidate genes for 45 economically important traits in cattle, including blood/immune system (e.g., CCDC88C) for male fertility, brain (e.g., TRIM46 and RAB6A) for milk production, and multiple growth-related tissues (e.g., FGF6 and CCND2) for body conformation. We validated these findings by using epigenomic data across major somatic tissues and sperm. Collectively, our findings provided novel insights into the genetic and biological mechanisms underlying complex traits in cattle, and our transcriptome atlas can serve as a primary source for biological interpretation, functional validation, studies of adaptive evolution, and genomic improvement in livestock.


Assuntos
Bovinos/genética , Transcriptoma , Animais , Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Metilação de DNA , Feminino , Genes , Leite , Especificidade de Órgãos , RNA-Seq , Reprodução
7.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445674

RESUMO

A genome-wide association study (GWAS) of the daughter pregnancy rate (DPR), cow conception rate (CCR), and heifer conception rate (HCR) using 1,001,374-1,194,736 first-lactation Holstein cows and 75,140-75,295 SNPs identified 7567, 3798, and 726 additive effects, as well as 22, 27, and 25 dominance effects for DPR, CCR, and HCR, respectively, with log10(1/p) > 8. Most of these effects were new effects, and some new effects were in or near genes known to affect reproduction including GNRHR, SHBG, and ESR1, and a gene cluster of pregnancy-associated glycoproteins. The confirmed effects included those in or near the SLC4A4-GC-NPFFR2 and AFF1 regions of Chr06 and the KALRN region of Chr01. Eleven SNPs in the CEBPG-PEPD-CHST8 region of Chr18, the AFF1-KLHL8 region of Chr06, and the CCDC14-KALRN region of Chr01 with sharply negative allelic effects and dominance values for the recessive homozygous genotypes were recommended for heifer culling. Two SNPs in and near the AGMO region of Chr04 that were sharply negative for HCR and age at first calving, but slightly positive for the yield traits could also be considered for heifer culling. The results from this study provided new evidence and understanding about the genetic variants and genome regions affecting the three fertility traits in U.S. Holstein cows.


Assuntos
Fertilidade , Estudo de Associação Genômica Ampla , Gravidez , Bovinos/genética , Animais , Feminino , Fertilidade/genética , Reprodução/genética , Fertilização , Lactação
8.
BMC Genomics ; 23(1): 531, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869425

RESUMO

BACKGROUND: This study aimed to identify long non-coding RNA (lncRNA) from the rumen tissue in dairy cattle, explore their features including expression and conservation levels, and reveal potential links between lncRNA and complex traits that may indicate important functional impacts of rumen lncRNA during the transition to the weaning period. RESULTS: A total of six cattle rumen samples were taken with three replicates from before and after weaning periods, respectively. Total RNAs were extracted and sequenced with lncRNA discovered based on size, coding potential, sequence homology, and known protein domains. As a result, 404 and 234 rumen lncRNAs were identified before and after weaning, respectively. However, only nine of them were shared under two conditions, with 395 lncRNAs found only in pre-weaning tissues and 225 only in post-weaning samples. Interestingly, none of the nine common lncRNAs were differentially expressed between the two weaning conditions. LncRNA averaged shorter length, lower expression, and lower conservation scores than the genome overall, which is consistent with general lncRNA characteristics. By integrating rumen lncRNA before and after weaning with large-scale GWAS results in cattle, we reported significant enrichment of both pre- and after-weaning lncRNA with traits of economic importance including production, reproduction, health, and body conformation phenotypes. CONCLUSIONS: The majority of rumen lncRNAs are uniquely expressed in one of the two weaning conditions, indicating a functional role of lncRNA in rumen development and transition of weaning. Notably, both pre- and post-weaning lncRNA showed significant enrichment with a variety of complex traits in dairy cattle, suggesting the importance of rumen lncRNA for cattle performance in the adult stage. These relationships should be further investigated to better understand the specific roles lncRNAs are playing in rumen development and cow performance.


Assuntos
RNA Longo não Codificante , Rúmen , Animais , Bovinos/genética , Feminino , Genoma , Fenótipo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Rúmen/metabolismo , Desmame
9.
J Dairy Sci ; 105(11): 8956-8971, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36153159

RESUMO

Maintaining a genetically diverse dairy cattle population is critical to preserving adaptability to future breeding goals and avoiding declines in fitness. This study characterized the genomic landscape of autozygosity and assessed trends in genetic diversity in 5 breeds of US dairy cattle. We analyzed a sizable genomic data set containing 4,173,679 pedigreed and genotyped animals of the Ayrshire, Brown Swiss, Guernsey, Holstein, and Jersey breeds. Runs of homozygosity (ROH) of 2 Mb or longer in length were identified in each animal. The within-breed means for number and the combined length of ROH were highest in Jerseys (62.66 ± 8.29 ROH and 426.24 ± 83.40 Mb, respectively; mean ± SD) and lowest in Ayrshires (37.24 ± 8.27 ROH and 265.05 ± 85.00 Mb, respectively). Short ROH were the most abundant, but moderate to large ROH made up the largest proportion of genome autozygosity in all breeds. In addition, we identified ROH islands in each breed. This revealed selection patterns for milk production, productive life, health, and reproduction in most breeds and evidence for parallel selective pressure for loci on chromosome 6 between Ayrshire and Brown Swiss and for loci on chromosome 20 between Holstein and Jersey. We calculated inbreeding coefficients using 3 different approaches, pedigree-based (FPED), marker-based using a genomic relationship matrix (FGRM), and segment-based using ROH (FROH). The average inbreeding coefficient ranged from 0.06 in Ayrshires and Brown Swiss to 0.08 in Jerseys and Holsteins using FPED, from 0.22 in Holsteins to 0.29 in Guernsey and Jerseys using FGRM, and from 0.11 in Ayrshires to 0.17 in Jerseys using FROH. In addition, the effective population size at past generations (5-100 generations ago), the yearly rate of inbreeding, and the effective population size in 3 recent periods (2000-2009, 2010-2014, and 2015-2018) were determined in each breed to ascertain current and historical trends of genetic diversity. We found a historical trend of decreasing effective population size in the last 100 generations in all breeds and breed differences in the effect of the recent implementation of genomic selection on inbreeding accumulation.


Assuntos
Endogamia , Condicionamento Físico Animal , Bovinos/genética , Animais , Polimorfismo de Nucleotídeo Único , Genoma , Genômica , Homozigoto , Genótipo
10.
J Anim Breed Genet ; 138(2): 259-273, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32975329

RESUMO

This study aimed to investigate interpopulation variation due to sex, breed and age, and the intrapopulation variation in the form of genetic variance for recombination in swine. Genome-wide recombination rate and recombination occurrences (RO) were traits studied in Landrace (LR) and Large White (LW) male and female populations. Differences were found for sex, breed, sex-breed interaction, and age effects for genome-wide recombination rate and RO at one or more chromosomes. Dams were found to have a higher genome-wide recombination rate and RO at all chromosomes than sires. LW animals had higher genome-wide recombination rate and RO at seven chromosomes but lower at two chromosomes than LR individuals. The sex-breed interaction effect did not show any pattern not already observable by sex. Recombination increased with increasing parity in females, while in males no effect of age was observed. We estimated heritabilities and repeatabilities for both investigated traits and obtained the genetic correlation between male and female genome-wide recombination rate within each of the two breeds studied. Estimates of heritability and repeatability were low (h2  = 0.01-0.26; r = 0.18-0.42) for both traits in all populations. Genetic correlations were high and positive, with estimates of 0.98 and 0.94 for the LR and LW breeds, respectively. We performed a GWAS for genome-wide recombination rate independently in the four sex/breed populations. The results of the GWAS were inconsistent across the four populations with different significant genomic regions identified. The results of this study provide evidence of variability for recombination in purebred swine populations.


Assuntos
Genoma , Genômica , Recombinação Genética , Animais , Feminino , Masculino , Fenótipo , Suínos
11.
BMC Genomics ; 21(1): 41, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931710

RESUMO

BACKGROUND: Health traits are of significant economic importance to the dairy industry due to their effects on milk production and associated treatment costs. Genome-wide association studies (GWAS) provide a means to identify associated genomic variants and thus reveal insights into the genetic architecture of complex traits and diseases. The objective of this study is to investigate the genetic basis of seven health traits in dairy cattle and to identify potential candidate genes associated with cattle health using GWAS, fine mapping, and analyses of multi-tissue transcriptome data. RESULTS: We studied cow livability and six direct disease traits, mastitis, ketosis, hypocalcemia, displaced abomasum, metritis, and retained placenta, using de-regressed breeding values and more than three million imputed DNA sequence variants. After data edits and filtering on reliability, the number of bulls included in the analyses ranged from 11,880 (hypocalcemia) to 24,699 (livability). GWAS was performed using a mixed-model association test, and a Bayesian fine-mapping procedure was conducted to calculate a posterior probability of causality to each variant and gene in the candidate regions. The GWAS detected a total of eight genome-wide significant associations for three traits, cow livability, ketosis, and hypocalcemia, including the bovine Major Histocompatibility Complex (MHC) region associated with livability. Our fine-mapping of associated regions reported 20 candidate genes with the highest posterior probabilities of causality for cattle health. Combined with transcriptome data across multiple tissues in cattle, we further exploited these candidate genes to identify specific expression patterns in disease-related tissues and relevant biological explanations such as the expression of Group-specific Component (GC) in the liver and association with mastitis as well as the Coiled-Coil Domain Containing 88C (CCDC88C) expression in CD8 cells and association with cow livability. CONCLUSIONS: Collectively, our analyses report six significant associations and 20 candidate genes of cattle health. With the integration of multi-tissue transcriptome data, our results provide useful information for future functional studies and better understanding of the biological relationship between genetics and disease susceptibility in cattle.


Assuntos
Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/genética , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Característica Quantitativa Herdável , Animais , Bovinos , Indústria de Laticínios , Predisposição Genética para Doença , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único , Transcriptoma
12.
BMC Genomics ; 19(1): 304, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703147

RESUMO

BACKGROUND: Crossover generated by meiotic recombination is a fundamental event that facilitates meiosis and sexual reproduction. Comparative studies have shown wide variation in recombination rate among species, but the characterization of recombination features between cattle breeds has not yet been performed. Cattle populations in North America count millions, and the dairy industry has genotyped millions of individuals with pedigree information that provide a unique opportunity to study breed-level variations in recombination. RESULTS: Based on large pedigrees of Jersey, Ayrshire and Brown Swiss cattle with genotype data, we identified over 3.4 million maternal and paternal crossover events from 161,309 three-generation families. We constructed six breed- and sex-specific genome-wide recombination maps using 58,982 autosomal SNPs for two sexes in the three dairy cattle breeds. A comparative analysis of the six recombination maps revealed similar global recombination patterns between cattle breeds but with significant differences between sexes. We confirmed that male recombination map is 10% longer than the female map in all three cattle breeds, consistent with previously reported results in Holstein cattle. When comparing recombination hotspot regions between cattle breeds, we found that 30% and 10% of the hotspots were shared between breeds in males and females, respectively, with each breed exhibiting some breed-specific hotspots. Finally, our multiple-breed GWAS found that SNPs in eight loci affected recombination rate and that the PRDM9 gene associated with hotspot usage in multiple cattle breeds, indicating a shared genetic basis for recombination across dairy cattle breeds. CONCLUSIONS: Collectively, our results generated breed- and sex-specific recombination maps for multiple cattle breeds, provided a comprehensive characterization and comparison of recombination patterns between breeds, and expanded our understanding of the breed-level variations in recombination features within an important livestock species.


Assuntos
Cruzamento , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Recombinação Genética , Animais , Bovinos , Mapeamento Cromossômico , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Masculino , Meiose
13.
BMC Evol Biol ; 17(1): 79, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28292260

RESUMO

BACKGROUND: Understanding the genetic and evolutionary mechanisms of speciation genes in sexually reproducing organisms would provide important insights into mammalian reproduction and fitness. PRDM9, a widely known speciation gene, has recently gained attention for its important role in meiotic recombination and hybrid incompatibility. Despite the fact that PRDM9 is a key regulator of recombination and plays a dominant role in hybrid incompatibility, little is known about the underlying genetic and evolutionary mechanisms that generated multiple copies of PRDM9 in many metazoan lineages. RESULTS: The present study reports (1) evidence of ruminant-specific multiple gene duplication events, which likely have had occurred after the ancestral ruminant population diverged from its most recent common ancestor and before the ruminant speciation events, (2) presence of three copies of PRDM9, one copy (lineages I) in chromosome 1 (chr1) and two copies (lineages II & III) in chromosome X (chrX), thus indicating the possibility of ancient inter- and intra-chromosomal unequal crossing over and gene conversion events, (3) while lineages I and II are characterized by the presence of variable tandemly repeated C2H2 zinc finger (ZF) arrays, lineage III lost these arrays, and (4) C2H2 ZFs of lineages I and II, particularly the amino acid residues located at positions -1, 3, and 6 have evolved under strong positive selection. CONCLUSIONS: Our results demonstrated two gene duplication events of PRDM9 in ruminants: an inter-chromosomal duplication that occurred between chr1 and chrX, and an intra-chromosomal X-linked duplication, which resulted in two additional copies of PRDM9 in ruminants. The observation of such duplication between chrX and chr1 is rare and may possibly have happened due to unequal crossing-over millions of years ago when sex chromosomes were independently derived from a pair of ancestral autosomes. Two copies (lineages I & II) are characterized by the presence of variable sized tandem-repeated C2H2 ZFs and evolved under strong positive selection and concerted evolution, supporting the notion of well-established Red Queen hypothesis. Collectively, gene duplication, concerted evolution, and positive selection are the likely driving forces for the expansion of ruminant PRDM9 sub-family.


Assuntos
Evolução Molecular , Especiação Genética , Histona-Lisina N-Metiltransferase/genética , Ruminantes/classificação , Ruminantes/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Conversão Gênica , Duplicação Gênica , Histona-Lisina N-Metiltransferase/química , Meiose , Filogenia , Recombinação Genética
14.
BMC Genomics ; 18(1): 293, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28403820

RESUMO

BACKGROUND: Segmental duplications (SDs) commonly exist in plant and animal genomes, playing crucial roles in genomic rearrangement, gene innovation and the formation of copy number variants. However, they have received little attention in most livestock species. RESULTS: Aiming at characterizing SDs across the genomes of diverse livestock species, we mapped genome-wide SDs of horse, rabbit, goat, sheep and chicken, and also enhanced the existing SD maps of cattle and pig genomes based on the most updated genome assemblies. We adopted two different detection strategies, whole genome analysis comparison and whole genome shotgun sequence detection, to pursue more convincing findings. Accordingly we identified SDs for each species with the length of from 21.7 Mb to 164.1 Mb, and 807 to 4,560 genes were harboured within the SD regions across different species. More interestingly, many of these SD-related genes were involved in the process of immunity and response to external stimuli. We also found the existence of 59 common genes within SD regions in all studied species except goat. These common genes mainly consisted of both UDP glucuronosyltransferase and Interferon alpha families, implying the connection between SDs and the evolution of these gene families. CONCLUSIONS: Our findings provide insights into livestock genome evolution and offer rich genomic sources for livestock genomic research.


Assuntos
Animais Domésticos/genética , Animais Domésticos/imunologia , Mapeamento Cromossômico/métodos , Duplicações Segmentares Genômicas , Animais , Galinhas , Evolução Molecular , Glucuronosiltransferase/genética , Cabras , Cavalos , Interferon-alfa/genética , Coelhos , Ovinos
15.
BMC Genomics ; 18(1): 425, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558656

RESUMO

BACKGROUND: Although genome-wide association and genomic selection studies have primarily focused on additive effects, dominance and imprinting effects play an important role in mammalian biology and development. The degree to which these non-additive genetic effects contribute to phenotypic variation and whether QTL acting in a non-additive manner can be detected in genetic association studies remain controversial. RESULTS: To empirically answer these questions, we analyzed a large cattle dataset that consisted of 42,701 genotyped Holstein cows with genotyped parents and phenotypic records for eight production and reproduction traits. SNP genotypes were phased in pedigree to determine the parent-of-origin of alleles, and a three-component GREML was applied to obtain variance decomposition for additive, dominance, and imprinting effects. The results showed a significant non-zero contribution from dominance to production traits but not to reproduction traits. Imprinting effects significantly contributed to both production and reproduction traits. Interestingly, imprinting effects contributed more to reproduction traits than to production traits. Using GWAS and imputation-based fine-mapping analyses, we identified and validated a dominance association signal with milk yield near RUNX2, a candidate gene that has been associated with milk production in mice. When adding non-additive effects into the prediction models, however, we observed little or no increase in prediction accuracy for the eight traits analyzed. CONCLUSIONS: Collectively, our results suggested that non-additive effects contributed a non-negligible amount (more for reproduction traits) to the total genetic variance of complex traits in cattle, and detection of QTLs with non-additive effect is possible in GWAS using a large dataset.


Assuntos
Bovinos/genética , Bovinos/fisiologia , Estudo de Associação Genômica Ampla , Impressão Genômica , Reprodução/genética , Animais , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
16.
Anim Genet ; 47(2): 174-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26692495

RESUMO

The milk fat globule (MFG) is one of the most representative of mammary gland tissues and can be utilized to study gene expression of lactating cows during lactation. In this study, RNA-seq technology was employed to detect differential expression of genes in MFGs at day 10 and day 70 after calving between two groups of cows with extremely high (H group) and low (L group) 305-day milk yield, milk fat yield and milk protein yield. In total, 1232, 81, 429 and 178 significantly differentially expressed genes (false discovery rate q < 0.05) were detected between H10 and L10, H70 and L70, H10 and H70, and L10 and L70 respectively. Gene Ontology enrichment and pathway analysis revealed that these differentially expressed genes were enriched in biological processes involved in mammary gland development, protein and lipid metabolism process, signal transduction, cellular process, differentiation and immune function. Among these differentially expressed genes, 178 (H10 vs. L10), 4 (H70 vs. L70), 68 (H10 vs. H70) and 22 (L10 vs. L70) were found to be located within previously reported QTL regions for milk production traits. Based on these results, some promising candidate genes for milk production traits in dairy cattle were suggested.


Assuntos
Bovinos/genética , Glicolipídeos/genética , Glicoproteínas/genética , Lactação/genética , Leite , Animais , Mapeamento Cromossômico , Indústria de Laticínios , Feminino , Expressão Gênica , Gotículas Lipídicas , Anotação de Sequência Molecular , Locos de Características Quantitativas , Análise de Sequência de RNA
17.
BMC Genomics ; 15: 593, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25023178

RESUMO

BACKGROUND: Copy number variations (CNVs) confer significant effects on genetic innovation and phenotypic variation. Previous CNV studies in swine seldom focused on in-depth characterization of global CNVs. RESULTS: Using whole-genome assembly comparison (WGAC) and whole-genome shotgun sequence detection (WSSD) approaches by next generation sequencing (NGS), we probed formation signatures of both segmental duplications (SDs) and individualized CNVs in an integrated fashion, building the finest resolution CNV and SD maps of pigs so far. We obtained copy number estimates of all protein-coding genes with copy number variation carried by individuals, and further confirmed two genes with high copy numbers in Meishan pigs through an enlarged population. We determined genome-wide CNV hotspots, which were significantly enriched in SD regions, suggesting evolution of CNV hotspots may be affected by ancestral SDs. Through systematically enrichment analyses based on simulations and bioinformatics analyses, we revealed CNV-related genes undergo a different selective constraint from those CNV-unrelated regions, and CNVs may be associated with or affect pig health and production performance under recent selection. CONCLUSIONS: Our studies lay out one way for characterization of CNVs in the pig genome, provide insight into the pig genome variation and prompt CNV mechanisms studies when using pigs as biomedical models for human diseases.


Assuntos
Variações do Número de Cópias de DNA , Sus scrofa/genética , Animais , Hibridização Genômica Comparativa , Dosagem de Genes , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
18.
BMC Genomics ; 15: 1105, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25510969

RESUMO

BACKGROUND: Genome wide association study (GWAS) has been proven to be a powerful tool for detecting genomic variants associated with complex traits. However, the specific genes and causal variants underlying these traits remain unclear. RESULTS: Here, we used target-enrichment strategy coupled with next generation sequencing technique to study target regions which were found to be associated with milk production traits in dairy cattle in our previous GWAS. Among the large amount of novel variants detected by targeted resequencing, we selected 200 SNPs for further association study in a population consisting of 2634 cows. Sixty six SNPs distributed in 53 genes were identified to be associated significantly with on milk production traits. Of the 53 genes, 26 were consistent with our previous GWAS results. We further chose 20 significant genes to analyze their mRNA expression in different tissues of lactating cows, of which 15 were specificly highly expressed in mammary gland. CONCLUSIONS: Our study illustrates the potential for identifying causal mutations for milk production traits using target-enrichment resequencing and extends the results of GWAS by discovering new and potentially functional mutations.


Assuntos
Estudo de Associação Genômica Ampla , Leite/metabolismo , Animais , Bovinos , Loci Gênicos , Genoma , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Lactação/genética , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Análise de Sequência de DNA
19.
BMC Genomics ; 14: 131, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23442346

RESUMO

BACKGROUND: Copy number variations (CNVs) are widespread in the human or animal genome and are a significant source of genetic variation, which has been demonstrated to play an important role in phenotypic diversity. Advances in technology have allowed for identification of a large number of CNVs in cattle. Comprehensive explore novel CNVs in the bovine genome would provide valuable information for functional analyses of genome structural variation and facilitating follow-up association studies between complex traits and genetic variants. RESULTS: In this study, we performed a genome-wide CNV detection based on high-density SNP genotyping data of 96 Chinese Holstein cattle. A total of 367 CNV regions (CNVRs) across the genome were identified, which cover 42.74 Mb of the cattle genome and correspond to 1.61% of the genome sequence. The length of the CNVRs on autosomes range from 10.76 to 2,806.42 Kb with an average of 96.23 Kb. 218 out of these CNVRs contain 610 annotated genes, which possess a wide spectrum of molecular functions. To confirm these findings, quantitative PCR (qPCR) was performed for 17 CNVRs and 13(76.5%) of them were successfully validated. CONCLUSIONS: Our study demonstrates the high density SNP array can significantly improve the accuracy and sensitivity of CNV calling. Integration of different platforms can enhance the detection of genomic structure variants. Our results provide a significant replenishment for the high resolution map of copy number variation in the bovine genome and valuable information for investigation of genomic structural variation underlying traits of interest in cattle.


Assuntos
Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , China , Cromossomos de Mamíferos/genética , Hibridização Genômica Comparativa , Feminino , Genoma , Variação Estrutural do Genoma , Genômica/métodos , Genótipo , Masculino , Anotação de Sequência Molecular , Cromossomo X/genética
20.
Genes (Basel) ; 14(9)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37761929

RESUMO

This study aims to collect RNA-Seq data from Bos taurus samples representing dry and lactating mammary tissue, identify lncRNA transcripts, and analyze findings for their features and functional annotation. This allows for connections to be drawn between lncRNA and the lactation process. RNA-Seq data from 103 samples of Bos taurus mammary tissue were gathered from publicly available databases (60 dry, 43 lactating). The samples were filtered to reveal 214 dry mammary lncRNA transcripts and 517 lactating mammary lncRNA transcripts. The lncRNAs met common lncRNA characteristics such as shorter length, fewer exons, lower expression levels, and less sequence conservation when compared to the genome. Interestingly, several lncRNAs showed sequence similarity to genes associated with strong hair keratin intermediate filaments. Human breast cancer research has associated strong hair keratin filaments with mammary tissue cellular resilience. The lncRNAs were also associated with several genes/proteins that linked to pregnancy using expression correlation and gene ontology. Such findings indicate that there are crucial relationships between the lncRNAs found in mammary tissue and the development of the tissue, to meet both the animal's needs and our own production needs; these relationships should be further investigated to ensure that we continue to breed the most resilient, efficient dairy cattle.


Assuntos
Lactação , RNA Longo não Codificante , Humanos , Feminino , Gravidez , Bovinos/genética , Animais , Lactação/genética , RNA Longo não Codificante/genética , Queratinas Específicas do Cabelo , Filamentos Intermediários , Citoesqueleto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA