RESUMO
BACKGROUND: DNA Polymerase Theta (POLQ) is a DNA polymerase involved in error-prone translesion DNA synthesis (TLS) and error-prone repair of DNA double-strand breaks (DSBs), whose function in hepatocellular carcinoma has not been investigated. METHODS: In the present study, both the data collected from the Cancer Genome Atlas (TCGA) and our group's results showed higher POLQ expression in HCC tissues than the para-cancerous tissues, which was associated with higher malignancy and poor prognosis. POLQ knockdown HCC cell model (shPOLQ) was constructed along with the corresponding negative control (shCtrl) through lentivirus infection for loss-of-function study. RESULTS: We found that, upon knockdown of POLQ, the proliferation and migration of HCC cells decreased and apoptosis percentage increased. Moreover, the percentage of cells in G2 phase significantly increased in shPOLQ group compared with shCtrl group. Xenografts in mice grafted with shPOLQ cells grew much slower than that transplanted with shCtrl cells, and expressed lower Ki67 level. Furthermore, an apoptosis-related signaling array was used to explore the involvement of downstream signaling pathways, suggesting the enhanced phosphorylation of HSP27 and JNK, and the de-activation of mTOR, PRAS40, ERK1/2 and STAT3 pathways. CONCLUSIONS: Collectively, our study revealed that POLQ may participate in the development of HCC, depletion of which may be a promising treatment strategy for HCC.
RESUMO
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
RESUMO
Although there have been substantial advances in our knowledge of the resistance of diffuse large B cell lymphoma (DLBCL) to chemotherapy, there are few efficient treatment strategies for recurrent/refractory DLBCL. The aim of this study was to investigate the role of aldehyde dehydrogenase (ALDH) 1A1 in the resistance of diffuse large B cell lymphoma to the chemotherapeutic mixture consisting of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP). The involvement of ALDH1A1 in DLBCL was elucidated by knockdown and pharmacologic inhibition; Cell Counting Kit-8 (CCK-8) and clone formation assays were used to determine its role in CHOP sensitivity and clone formation ability. Caspase colorimetric assay was used to measure the extent of apoptosis. Western blot analysis was used to measure signal transducer and activator of transcription 3 (STAT3)/nuclear factor kappa B (NF-κB) signaling proteins, and quantitative real-time PCR (RT-PCR) was used to measure the differential expression of ALDH1A1 of DLBCL patients and healthy donors. ALDH1A1 showed a 5.64-fold higher expression in malignant B cells than in normal B cells. Diethylaminobenzaldehyde (DEAB) decreased the half maximal inhibitory concentration (IC50) of the CHOP regimen in Farage cells from 344.78 ± 65.75 to 183.88 ± 49.75 ng/ml (P = 0.004). Both knockdown and inhibition of ALDH1A1 reduced clonogenicity, increased caspase-3/caspase-9 activity, and attenuated the phosphorylation status of STAT3/NF-κB. The prognosis of patients with a high level of ALDH1A1 expression was poor compared with that of patients with low levels of expression (P = 0.044). ALDH1A1 is a new mediator for resistance of DLBCL to CHOP; it is a predictor of clinical prognosis and may serve as a potential target to improve chemotherapy responsiveness of human DLBCL.
Assuntos
Aldeído Desidrogenase/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linfoma Difuso de Grandes Células B/genética , Adulto , Idoso , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Ativação Enzimática/genética , Feminino , Expressão Gênica , Inativação Gênica , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Estadiamento de Neoplasias , Prednisona/uso terapêutico , Prognóstico , Interferência de RNA , Retinal Desidrogenase , Fator de Transcrição STAT3/metabolismo , Ensaio Tumoral de Célula-Tronco , Vincristina/uso terapêutico , Adulto JovemRESUMO
Background: Metabolic syndrome (MetS) has been related to a high incidence of hepatocellular carcinoma (HCC). However, the influence of MetS on survival of patients with HCC is still unclear. We performed a systematic review and meta-analysis to evaluate the association between MetS and survival of HCC patients. Methods: A search of PubMed, Embase, and Web of Science retrieved relevant cohort studies from the inception of the databases to October 16, 2022. Data collection, literature search, and statistical analysis were carried out independently by two authors. We pooled the results using a random-effects model that incorporates heterogeneity. Results: In the meta-analysis, 8080 patients with HCC were included from ten cohort studies, and 1166 patients (14.4%) had MetS. Eight studies included patients treated primarily with radical hepatectomy, one study with patients receiving sorafenib, and another study included patients who were treated with radical hepatectomy or non-surgical treatments. Pooled results showed that MetS was associated with poor overall survival (OS, risk ratio [RR]: 1.21, 95% confidence interval [CI]:1.08 to 1.37, p = 0.001; I2 = 32%) and progression-free survival (PFS, RR: 1.33, 95% CI: 1.18 to 1.49, p < 0.001, I2 = 14%). Influencing analysis by excluding one study at a time showed consistent results (p all < 0.05). Subgroup analyses showed similar results in studies with MetS diagnosed with the National Cholesterol Education Program Adult Treatment Panel III or International Diabetes Federal criteria, and in studies with mean follow-up durations < or ≥ 3.5 years (p for subgroup difference all > 0.05). Conclusion: In patients with HCC, MetS may be a risk factor of poor OS and PFS, particularly for those after radical hepatectomy.
RESUMO
Blockage of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signal pathway is effective to increase the cytotoxic effects of oncolytic virus on cancer cells, but the detailed mechanisms are still largely unknown. Based on this, the present study managed to investigate the anti-tumor effects of PI3K inhibitor ZSTK474 and oncolytic vesicular stomatitis virus VSVΔ51 combination treatments on osteosarcoma (OS) in vitro and in vivo. Specifically, ZSTK474 aggravated the inhibiting effects of VSVΔ51 on osteosarcoma development by triggering endoplasmic reticulum (ER)-stress mediated apoptotic cell death. Mechanistically, either ZSTK474 or VSVΔ51 alone had limited effects on cell viability in osteosarcoma cells, while ZSTK474 and VSVΔ51 combination treatments significantly induced osteosarcoma cell apoptosis. Interestingly, VSVΔ51 increased the expression levels of IRE1α and p-PERK to initiate ER stress in osteosarcoma cells, which were aggravated by co-treating cells with ZSTK474. Next, the promoting effects of ZSTK474-VSVΔ51 combined treatment on osteosarcoma cell death were abrogated by the ER-stress inhibitor 4-phenyl butyric acid (4-PBA), indicating that ZSTK474 enhanced the cytotoxic effects of VSVΔ51 on osteosarcoma cells in an ER-stress dependent manner. Finally, the xenograft tumor-bearing mice models were established, and the results showed that ZSTK474-VSVΔ51 combined treatment synergistically hindered tumorigenesis of osteosarcoma cells in vivo. Taken together, our data suggested that ZSTK474 was a novel agent to enhance the cytotoxic effects of VSVΔ51 on osteosarcoma by aggravating ER-stress, and the present study might provide alternative therapy treatments for osteosarcoma in clinic.
Assuntos
Estresse do Retículo Endoplasmático , Vírus Oncolíticos/fisiologia , Osteossarcoma/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Triazinas/farmacologia , Vesiculovirus/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Osteossarcoma/ultraestrutura , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Accumulated studies showed that numerous microRNAs (miRNAs) were aberrantly expressed in human intrahepatic cholangiocarcinoma (ICC) and contributed to the tumorigenic processes. However, whether miR-129-2-3p is implicated in the ICC initiation and progression is still limited. Here, the results revealed that miR-129-2-3p expression was notably decreased in ICC tissues and cell lines, and that a low miR-129-2-3p expression was obviously associated with distant metastasis and clinical stage. Exogenous miR-129-2-3p expression evidently repressed the proliferative and invasive abilities of ICC cells. Mechanistic studies indicated that Wild-type p53-induced phosphatase 1 (Wip1) was a direct target gene for miR-129-2-3p in ICC cells. Furthermore, silencing Wip1 expression mimicked the suppressive effects of miR-129-2-3p upregulation on ICC cells. Interestingly, reintroduction of Wip1 expression partially abolished the miR-129-2-3p -reduced cell proliferation and invasion in ICC. Moreover, ectopic miR-129-2-3p expression hindered the ICC tumor growth in vivo. To the best of our knowledge, it is the first time to reveal that miR-129-2-3p plays a crucial role in tumor suppression in ICC pathogenesis through directly targeting Wip1. These results will aid in elucidating the roles of miR-129-2-3p in ICC, and suggest that this miRNA may provide a potential target for the treatment of ICC.
RESUMO
BACKGROUND: Inducible nitric oxide synthase (iNOS) has supposed to implicate in inflammation, infection, liver cirrhosis, and neoplastic diseases. This study was designed to explore the biological and clinical function of iNOS in intrahepatic cholangiocarcinoma (ICC). METHODS: RT-PCR (Real-time quantitative PCR) and immunohistochemical staining were used to analyze the expression of iNOS in ICC and adjacent tissues. CCK8, transwell assays, flow cytometry were conducted to detect the proliferation, apoptosis, cell cycle. Western blotting was performed to detect the expression of target proteins. Multivariate analyses were conducted to analysis associates between clinicopathological values and survival. RESULTS: We found that levels of iNOS mRNA and protein were dramatically increased in ICC samples and positively correlated with complicated bile duct stone, differentiation, pathology T, pathology M, Wip1, MMP-2, and MMP-9. iNOS expression was significantly correlated with the poor survival of ICC patients. Furthermore, iNOS was high expression in ICC cell lines (QBC-939, ICC-9810, SSP-25) compare with human normal biliary epithelium cell line (HIBEpic); both iNOS knockdown and iNOS inhibitor (1400 W) suppressed cell proliferation, invasion, and migration though nitric oxide production in ICC cells. Down-regulation of iNOS also induced G0/G1 cell cycle arrest and ICC cell apoptosis. Moreover, iNOS knockdown treatment significantly decreased Wip1, MMP-9, and MMP-2 gene expression. CONCLUSION: Lowly expressed iNOS-inhibited proliferation yet promoted apoptosis of ICC cells. Our data show targeted inhibition of iNOS in ICC may have therapeutic value.
RESUMO
Increasing evidence has shown that aldehyde dehydrogenase 1A1 (ALDH1A1), a detoxifying enzyme, is responsible for chemoresistance in a variety of tumors. Although the majority of patients with diffuse large B-cell lymphoma (DLBCL) can be cured with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), chemoresistance is a common cause of treatment failure. This study aims to investigate the significance of ALDH1A1 expression and the mechanism by which ALDH1A1 is involved in the chemoresistance of DLBCL cells. ALDH1A1 expression was assessed in 88 DLBCL tissues by immunohistochemistry. The association between ALDH1A1 expression and outcome was evaluated. We also investigated the effect of ALDH1A1 on CHOP resistance in DLBCL cells using functional analysis. ALDH1A1 expression levels were upregulated in patients with stable or progressive disease after CHOP and its expression positively correlated with expression of STAT3 and p-STAT3. In keeping with these observations, ALDH1A1 expression was significantly associated with short survival of DLBCL patients who received CHOP chemotherapy. In functional assays in Pfeiffer cells, overexpression of ALDH1A1 conferred resistance to CHOP, while silencing of ALDH1A1 using short hairpin RNA had the opposite effect. Furthermore, we also observed that ALDH1A1 could regulate the JAK2/STAT3 pathway, while inhibition of the JAK2/STAT3 pathway by WP1066 negated the effect of ALDH1A1 overexpression. These observations reveal that ALDH1A1 induces resistance to CHOP through activation of the JAK2/STAT3 pathway in DLBCL, and its targeting provides a potential strategic approach for reversing CHOP resistance.