Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37093145

RESUMO

Organic-cation engineering has recently proven effective in flexibly regulating two-dimensional hybrid organic-inorganic perovskites (2D HOIPs) to achieve a diversity of newly emerging applications. There have been many mechanistic studies based on the structural tunability of organic cations; nevertheless, those with an emphasis on the effect solely caused by the organic cations remain lacking. To this end, here we deliberately design a set of 2D HOIPs in which the inorganic layers are kept nearly intact upon cation modification, i.e., the precursor phenethylammonium lead iodide and its four derivatives with the phenyl group's para-position H being replaced by CH3, F, Cl, and Br. By means of femtosecond time-resolved transient absorption spectroscopy and temperature-dependent/time-resolved photoluminescence spectroscopy, we interrogate the subtle impact of cation modification on phonon dynamics, coherent phonon modes, phonon-dressed exciton dynamics, and excitonic emissions. A concerted trend for phonon lifetimes and exciton relaxation lifetimes regulated by cation modification is revealed, evidencing the existence of strong exciton-phonon coupling in this 2D HOIP system. The observed mass effect can be ascribed to the change in moment of inertia of organic cations. In addition, we observe an interesting interplay of exciton kinetics pertinent to population transfers between two emissive states, likely linked to the subtle variation in crystal symmetry induced by cation modification. The mechanistic insights gained from this work would be of value for the 2D HOIPs-based applications.

2.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212399

RESUMO

Singlet fission (SF) is a spin-allowed exciton multiplication process, in which a photogenerated singlet separates efficiently into two free triplets. Herein, we report an experimental study on the solution-phase intermolecular SF (xSF) in a prototype radical dianion system of PTCDA2-, which is produced from its neutral precursor PTCDA (i.e., perylenetetracarboxylic dianhydride) via a two-step consecutive photoinduced electron transfer mechanism. Our ultrafast spectroscopic results enable a comprehensive mapping of the elementary steps involved in the solution-phase xSF process of photoexcited PTCDA2-. Along the cascading xSF pathways, the three intermediates including excimer 1(S1S0), spin-correlated triplet pair 1(T1T1), and spatially separated triplet pair 1(T1·S0·T1) have been identified, with their formation/relaxation time constants being determined. This work demonstrates that the solution-phase xSF materials can be extended to charged radical systems and that the three-step model usually adopted to describe the crystalline-phase xSF can also be valid in describing solution-phase xSF.

3.
Angew Chem Int Ed Engl ; 62(34): e202308140, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37395373

RESUMO

Inspired by its great success in the photovoltaic field, methylammonium lead iodide perovskite (MAPbI3 ) has recently been actively explored as photocatalysts in H2 evolution reactions. However, the practical application of MAPbI3 photocatalysts remains hampered by the intrinsically fast trapping and recombination of photogenerated charges. Herein, we propose a novel strategy of regulating the distribution of defective areas to promote charge-transfer dynamics of MAPbI3 photocatalysts. By deliberately designing and synthesizing the MAPbI3 photocatalysts featuring a unique continuation of defective areas, we demonstrate that such a feature enables retardation of charge trapping and recombination via lengthening the charge-transfer distance. As an outcome, such MAPbI3 photocatalysts turn out to achieve an impressive photocatalytic H2 evolution rate as high as 0.64 mmol ⋅ g-1 ⋅ h-1 , one order of magnitude higher than that of the conventional MAPbI3 photocatalysts. This work establishes a new paradigm for controlling charge-transfer dynamics in photocatalysis.

4.
Inorg Chem ; 61(46): 18779-18788, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36346405

RESUMO

Phosphor-converted white light-emitting diodes (pc-wLEDs) are promising candidates for next-generation solid-state lighting and display technologies. However, most of the conventional phosphors in pc-wLED devices suffer from serious thermal quenching (TQ) at high temperatures. Herein, we investigate an unconventional high-efficiency metal-halide cluster-based phosphor with dynamic Cu-Cu interactions that can resist the TQ effect of photoluminescence. The temperature-dependent structure and solid-state and in situ NMR spectroscopy reveal that the weakening of the Cu-Cu interaction in such a phosphor system enables the electronic structural transition from a bonding to a nonbonding state and hence sustains the PL efficiency at high temperatures (up to 100 °C). The pc-wLEDs incorporating the zero-TQ phosphor show a rapid brightness rise even at a high bias current (1000 mA) with a color rendering index as high as 90, comparable to the commercial phosphor-based prototype LEDs (e.g., YAG:Ce3+). This work establishes a novel prototype of a cluster-based phosphor featuring dynamic intermetallic interactions, which paves the way for the exploration of pc-wLEDs against thermal quenching.

5.
J Chem Phys ; 156(14): 144701, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428377

RESUMO

The integration of confined exciton and localized surface plasmon in a hybrid nanostructure has recently stimulated extensive interests. The mechanistic insights into the elusive exciton-plasmon interplay at the nanoscale are of both fundamental and applicable values. Herein, by taking a hybrid WSe2/CuFeS2 system as a prototype, in which the excitonic semiconductor WSe2 nanosheets are interfaced with the plasmonic semiconductor CuFeS2 nanocrystals to form a heterostructure, we design and perform an ultrafast dynamics study to glean information in this regard. Specifically, the band-alignment relationship between the two components enables the contrasting case studies in which the excitonic excited states of WSe2 are pre-selected to be on-/off-resonant with the plasmon band of CuFeS2. As revealed by the joint observations from steady-state absorption and photoexcitation-dependent/temperature-dependent femtosecond time-resolved transient absorption (fs-TA) spectroscopy, an effective energy transfer process occurs in this exciton-plasmon system where the energy donor (acceptor) is the excitonic WSe2 (plasmonic CuFeS2) and its efficiency is modulated by the exciton-plasmon coupling strength. Furthermore, as inferred from the temperature-dependent fs-TA analysis, the opening of such an energy-transfer channel turns out to take place during the early phase of plasmon decay (∼1 ps). In addition, the activation energy of energy transfer for a specific exciton-state-selected case is estimated (∼200 meV). This work provides a dynamics perspective to the plasmon semiconductor-involved exciton-plasmon interplay that features excited-state selectivity of exciton band and, hence, would be of guiding value for rational design and optimization of relevant applications based on exciton-plasmon manipulation.

6.
Molecules ; 27(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889315

RESUMO

Solid-state lighting technology, where light-emitting diodes (LEDs) are used for energy conversion from electricity to light, is considered a next-generation lighting technology. One of the significant challenges in the field is the synthesis of high-efficiency phosphors for designing phosphor-converted white LEDs under high flux operating currents. Here, we reported the synthesis, structure, and photophysical properties of a tetranuclear Cu(I)-halide cluster phosphor, [bppmCu2I2]2 (bppm = bisdiphenylphosphinemethane), for the fabrication of high-performance white LEDs. The PL investigations demonstrated that the red emission exhibits a near-unity photoluminescence quantum yield at room temperature and unusual spectral broadening with increasing temperature in the crystalline state. Considering the excellent photophysical properties, the crystalline sample of [bppmCu2I2]2 was successfully applied for the fabrication of phosphor-converted white LEDs. The prototype white LED device exhibited a continuous rise in brightness in the range of a high bias current (100-1000 mA) with CRI as high as 84 and CCT of 5828 K, implying great potential for high-quality white LEDs.

7.
Angew Chem Int Ed Engl ; 59(27): 11093-11100, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32219966

RESUMO

Excitonic processes in semiconductors open up the possibility for pursuing photocatalytic organic synthesis. However, the insufficient spin relaxation and robust nonradiative decays in semiconductors place restrictions on both quantum yield and selectivity of these reactions. Herein, by taking polymeric carbon nitride (PCN)/acetone as a prototypical system, we propose that extrinsic aliphatic ketones can serve as molecular co-catalysts for promoting spin-flip transition and suppressing non-radiative energy losses. Spectroscopic investigations indicate that hot excitons in PCN can be transferred to ketones, while triplet excitons in ketones can be transferred to PCN. As such, the PCN/ketone systems exhibit considerable triplet-exciton accumulation and extended visible-light response, leading to excellent performance in exciton-based photocatalysis, such as singlet oxygen generation. This work provides a fundamental understanding of energy harvesting in semiconductor/molecule systems, and paves the way for optimizing exciton-based photocatalysis via molecular co-catalyst design.

8.
J Am Chem Soc ; 140(9): 3474-3480, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29451386

RESUMO

Recently low-dimensional materials hold great potential in the field of photocatalysis, whereas the concomitantly promoted many-body effects have long been ignored. Such Coulomb interaction-mediated effects would lead to some intriguing, nontrivial band structures, thus promising versatile photocatalytic performances and optimized strategies. Here, we demonstrate that ultrathin black phosphorus (BP) nanosheets exhibit an exotic, excitation-energy-dependent, optical switching effect in photocatalytic reactive oxygen species (ROS) generation. It is, for the first time, observed that singlet oxygen (1O2) and hydroxyl radical (•OH) are the dominant ROS products under visible- and ultraviolet-light excitations, respectively. Such an effect can be understood as a result of subband structure, where energy-transfer and charge-transfer processes are feasible under excitations in the first and second subband systems, respectively. This work not only establishes an in-depth understanding on the influence of many-body effects on photocatalysis but also paves the way for optimizing catalytic performances via controllable photoexcitation.

9.
J Am Chem Soc ; 140(5): 1760-1766, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29319310

RESUMO

Excitonic effects mediated by Coulomb interactions between photogenerated electrons and holes play crucial roles in photoinduced processes of semiconductors. In terms of photocatalysis, however, efforts have seldom been devoted to the relevant aspects. For the catalysts with giant excitonic effects, the coexisting, competitive exciton generation serves as a key obstacle to the yield of free charge carriers, and hence, transformation of excitons into free carriers would be beneficial for optimizing the charge-carrier-involved photocatalytic processes. Herein, by taking bismuth oxybromide (BiOBr) as a prototypical model system, we demonstrate that excitons can be effectively dissociated into charge carriers with the incorporation of oxygen vacancy, leading to excellent performances in charge-carrier-involved photocatalytic reactions such as superoxide generation and selective organic syntheses under visible-light illumination. This work not only establishes an in-depth understanding of defective structures in photocatalysts but also paves the way for excitonic regulation via defect engineering.

10.
Nano Lett ; 17(5): 3231-3237, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28337916

RESUMO

Controlled doping for adjustable material polarity and charge carrier concentration is the basis of semiconductor materials and devices, and it is much more difficult to achieve in ionic semiconductors (e.g., ZnO and GaN) than in covalent semiconductors (e.g., Si and Ge), due to the high intrinsic defect density in ionic semiconductors. The organic-inorganic perovskite material, which is frenetically being researched for applications in solar cells and beyond, is also an ionic semiconductor. Here we present the Ag-incorporated organic-inorganic perovskite films and planar heterojunction solar cells. Partial substitution of Pb2+ by Ag+ leads to improved film morphology, crystallinity, and carrier dynamics as well as shifted Fermi level and reduced electron concentration. Consequently, in planar heterojunction photovoltaic devices with inverted stacking structure, Ag incorporation results in an enhancement of the power conversion efficiency from 16.0% to 18.4% in MAPbI3 based devices and from 11.2% to 15.4% in MAPbI3-xClx based devices. Our work implies that Ag incorporation is a feasible route to adjust carrier concentrations in solution-processed perovskite materials in spite of the high concentration of intrinsic defects.

11.
Photochem Photobiol Sci ; 16(6): 972-984, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28485746

RESUMO

Photoinduced intermolecular proton-transfer processes from N,N-dimethyl-3-arylpropan-1-ammonium chloride salts (ArCl, with aryl as 1-pyrenyl, 9-anthryl, and 2-naphtyl) to a solvent molecule have been investigated by steady-state and dynamic spectroscopic methods. The intermolecular proton-transfers are coupled either to the formation of an exciplex or to a solvent-separated ion pair in what we have termed a 'proton-coupled charge-transfer reaction'. A range of solvents has been observed to mediate both the ground-state conformations of the ArCl and the extent of electron transfer. Unlike typical photoacids, in which through-bond interactions control photoacidity, through-space charge-transfer interactions are responsible in the excited singlet states of the ArCl. Transient absorption experiments reveal a range of electronic comportments in the excited-states of the ArCl. Excited-state pKa values of -3.4, 1.3, and -3.3 in THF were calculated using a Förster-like approach for the 1-pyrenyl, 9-anthryl, and 2-naphthyl salts, respectively. The observed rate of proton-transfer was found to be independent of the thermodynamic driving force and the short-term reversibility of these reactions has been approximated. The data suggest how other systems may be designed to facilitate this novel process.

12.
Phys Chem Chem Phys ; 19(14): 9537-9544, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28345696

RESUMO

Aluminium (Al)-doped zinc oxide (ZnO) nanowires (NWs) with a unique core-shell structure and a Δ-doping profile at the interface were successfully grown using a combination of chemical vapor deposition re-growth and few-layer AlxOy atomic layer deposition. Unlike the conventional heavy doping which degrades the near-band-edge (NBE) luminescence and increases the electron-phonon coupling (EPC), it was found that there was an over 20-fold enhanced NBE emission and a notably-weakened EPC in this type of interfacially Al-doped ZnO NWs. Further experiments revealed a greatly suppressed nonradiative decay process and a much enhanced radiative recombination rate. By comparing the finite-difference time-domain simulation with the experimental results from intentionally designed different NWs, this enhanced radiative decay rate was attributed to the Purcell effect induced by the confined and intensified optical field within the interfacial layer. The ability to manipulate the confinement, transport and relaxation dynamics of ZnO excitons can be naturally guaranteed with this unique interfacial Δ-doping strategy, which is certainly desirable for the applications using ZnO-based nano-photonic and nano-optoelectronic devices.

13.
Phys Chem Chem Phys ; 17(19): 13129-36, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25916946

RESUMO

A molecule or a molecular system always consists of excited states of different spin multiplicities. With conventional optical excitations, only the (bright) states with the same spin multiplicity of the ground state could be directly reached. How to reveal the dynamics of excited (dark) states remains the grand challenge in the topical fields of photochemistry, photophysics, and photobiology. For a singlet-triplet coupled molecular system, the (bright) singlet dynamics can be routinely examined by conventional femtosecond pump-probe spectroscopy. However, owing to the involvement of intrinsically fast decay channels such as intramolecular vibrational redistribution and internal conversion, it is very difficult, if not impossible, to single out the (dark) triplet dynamics. Herein, we develop a novel strategy that uses an ultrafast broadband white-light continuum as a excitation light source to enhance the probability of intersystem crossing, thus facilitating the population flow from the singlet space to the triplet space. With a set of femtosecond time-reversed pump-probe experiments, we report on a proof-of-concept molecular system (i.e., the malachite green molecule) that the pure triplet dynamics can be mapped out in real time through monitoring the modulated emission that occurs solely in the triplet space. Significant differences in excited-state dynamics between the singlet and triplet spaces have been observed. This newly developed approach may provide a useful tool for examining the elusive dark-state dynamics of molecular systems and also for exploring the mechanisms underlying molecular luminescence/photonics and solar light harvesting.


Assuntos
Escuridão , Teoria Quântica , Modelos Teóricos , Espectrometria de Fluorescência
14.
Angew Chem Int Ed Engl ; 54(39): 11495-500, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26276905

RESUMO

It has been a long-standing demand to design hetero-nanostructures for charge-flow steering in semiconductor systems. Multi-component nanocrystals exhibit multifunctional properties or synergistic performance, and are thus attractive materials for energy conversion, medical therapy, and photoelectric catalysis applications. Herein we report the design and synthesis of binary and ternary multi-node sheath hetero-nanorods in a sequential chemical transformation procedure. As verified by first-principles simulations, the conversion from type-I ZnS-CdS heterojunction into type-II ZnS-(CdS/metal) ensures well-steered collections of photo-generated electrons at the exposed ZnS nanorod stem and metal nanoparticles while holes at the CdS node sheaths, leading to substantially improved photocatalytic hydrogen-evolution performance.

16.
J Am Chem Soc ; 135(33): 12468-74, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23895410

RESUMO

Graphene oxide (GO) is an attractive alternative for large-scale production of graphene, but its general structure is still under debate due to its complicated nonstoichiometric nature. Here we perform a set of femtosecond pump-probe experiments on as-synthesized GO to extrapolate structural information in situ. Remarkably, it is observed that, in these highly oxidized GO samples, the ultrafast graphene-like dynamics intrinsic to pristine graphene is completely dominant over a wide energy region and can be modified by the localized impurity states and the electron-phonon coupling under certain conditions. These observations, combined with the X-ray photoelectron spectroscopy analysis and control experiments, lead to an important conclusion that GO consists of two types of domain, namely the carbon-rich graphene-like domain and the oxygen-rich domain. This study creates a new understanding of the realistic domain structure and properties of as-synthesized GO, offering useful guidance for future applications based on chemically modified/functionalized graphenes.


Assuntos
Arsênio/química , Grafite/química , Grafite/síntese química , Óxidos/química , Análise Espectral , Técnicas de Química Sintética , Oxigênio/química , Fatores de Tempo
17.
J Phys Chem Lett ; 14(18): 4142-4149, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37103890

RESUMO

We demonstrate the real-time tracking of explosive boiling dynamics at the alcohol/MXene interface by monitoring the photoinduced lattice dynamics of MXene nanosheets dispersed in different alcohols. As revealed by ultrafast spectroscopy, the explosive boiling experiences three cascading stages, i.e., the starting initiation (0-1 ns), the following phase explosion (1-6 ns), and the eventual termination (>6 ns). More importantly, the occurrence conditions of explosive boiling are rationally evaluated via photothermal modeling, echoing well to our experimental observations and further suggesting that ∼17-25 layers of alcohol molecules undergo phase transition from liquid to vapor, a result that can hardly be attained by other physicochemical means. Additionally, useful insights into thermal conduction/diffusion and transient acoustic pressure related to the early stage of explosive boiling are provided. This paradigmatic study enriches the fundamental understanding (on a microscopic level) about the elusive dynamics of explosive boiling at the liquid-solid interface.

18.
J Phys Chem Lett ; 14(6): 1504-1511, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36745060

RESUMO

Metal halide perovskites (MHPs) with superior optoelectronic properties have recently been actively pursued as catalysts in heterogeneous photocatalysis. Dissociating excitons into charge carriers holds the key to enhancing the photocatalytic performance of MHP-based photocatalysts, especially for those with strong quantum-confinement effects. However, attaining efficient exciton dissociation has been rather challenging. Herein, we propose a novel concept that the edge interfacial state can trigger anisotropic electron transfer to promote exciton dissociation. By taking Cs4PbBr6/TiO2 mesocrystal heterojunction as a proof-of-concept, we demonstrate that the unique interfacial state at the edge of the system is generated by the defect-mediated chemical interaction and acts as a trap state, which brings on a directionally favored electron transfer from the center to edge regions, thereby significantly enhancing the desired exciton dissociation. Consequently, such a system achieves an excellent performance in photocatalytic CO2 reduction. This paradigmatic work sheds light on the excitonic aspects for rational design of advanced photocatalysts toward high performance.

19.
Adv Sci (Weinh) ; 10(29): e2302670, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37587775

RESUMO

Electroactive microbial cells have evolved unique extracellular electron transfer to conduct the reactions via redox outer-membrane (OM) proteins. However, the electron transfer mechanism at the interface of OM proteins and nanomaterial remains unclear. In this study, the mechanism for the electron transfer at biological/inorganic interface is investigated by integrating molecular modeling with electrochemical and spectroscopic measurements. For this purpose, a model system composed of OmcA, a typical OM protein, and the hexagonal tungsten trioxide (h-WO3 ) with good biocompatibility is selected. The interfacial electron transfer is dependent mainly on the special molecular configuration of OmcA and the microenvironment of the solvent exposed active center. Also, the apparent electron transfer rate can be tuned by site-directed mutagenesis at the axial ligand of the active center. Furthermore, the equilibrium state of the OmcA/h-WO3 systems suggests that their attachment is attributed to the limited number of residues. The electrochemical analysis of OmcA and its variants reveals that the wild type exhibits the fastest electron transfer rate, and the transient absorption spectroscopy further shows that the axial histidine plays an important role in the interfacial electron transfer process. This study provides a useful approach to promote the site-directed mutagenesis and nanomaterial design for bioelectrocatalytic applications.


Assuntos
Heme , Shewanella , Heme/química , Heme/metabolismo , Elétrons , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Shewanella/metabolismo , Citocromos/metabolismo , Óxidos
20.
ACS Appl Mater Interfaces ; 15(35): 42026-42036, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37612785

RESUMO

The significant boost in surface-enhanced Raman scattering (SERS) by the chemical enhancement of semiconducting oxides is a pivotal finding. It offers a prospective path toward high uniformity and low-cost SERS substrates. However, a detailed understanding of factors that influence the charge transfer process is still insufficient. Herein, we reveal the important role of defect-induced band offset and electron lifetime change in SERS evolution observed in a MoO3 oxide semiconductor. By modulating the density of oxygen vacancy defects using ultraviolet (UV) light irradiation, SERS is found to be improved with irradiation time in the first place, but such improvement later deteriorates for prolonged irradiation even if more defects are generated. Insights into the observed SERS evolution are provided by ultraviolet photoelectron spectroscopy and femtosecond time-resolved transient absorption spectroscopy measurements. Results reveal that (1) a suitable offset between the energy band of the substrate and the orbitals of molecules is facilitated by a certain defect density and (2) defect states with relatively long electron lifetime are essential to achieve optimal SERS performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA