RESUMO
BACKGROUND: The neck management of clinical-nodal negative (cN0) oral squamous cell carcinoma (OSCC) remains controversial. Elective neck dissection (END) and observation are the main strategies, but it is still not clear who could benefit the most from END. The purpose of this study was to clarify the potential clinical factors that affect the therapeutic value of END and to explore the actual characteristics associated with benefit from END. METHODS: Patients with cN0 OSCC were identified in the SEER database from 2000 to 2019. 5-year Overall survival (OS) and disease-specific survival (DSS) were analyzed using the KaplanâMeier method, and the hazard ratios (HRs) for survival were estimated using the Cox regression model. Multiple subgroup analyses of DSS and OS among different factors, comparing END and No END, were performed. RESULTS: A total of 17,019 patients with cN0 OSCC were included. The basic survival analysis and Cox regression model showed that END increased the probability of 5-year DSS and OS and was an independent prognostic factor. However, among patients who underwent only primary tumor surgery, no significant differences were found between the END and No END groups in 5-year DSS (P = 0. 585) and OS (P = 0.465). Further subgroup analysis showed that primary sites and T stage, but not other factors, might influence the benefit of END. Significant differences were found for T1 (P < 0.001 for OS) and T2 (P = 0.001 for DSS and < 0.001 for OS) tongue squamous cell carcinoma (TSCC) but not for other primary tumor sites. CONCLUSION: This large-scale retrospective population-based cohort study suggests that not all patients with cN0 OSCC could benefit from END. Patients with cN0 TSCC are recommended to undergo END, especially with early-stage tumors.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/cirurgia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Esvaziamento Cervical , Neoplasias Bucais/cirurgia , Estudos de Coortes , Estudos RetrospectivosRESUMO
Most current metabolomics studies of oral squamous cell carcinoma (OSCC) are mainly focused on identifying potential biomarkers for early screening and diagnosis, while few studies have investigated the metabolic profiles promoting metastasis. In this study, we aimed to explore the altered metabolic pathways associated with metastasis of OSCC. Here, we identified four OSCC cell models (CAL27, HN6, HSC-3, SAS) that possess different invasive heterogeneity via the transwell invasion assay and divided them into high-invasive (HN6, SAS) and low-invasive (CAL27, HSC-3) cells. Quantitative analysis and stable isotope tracing using [U-13C6] glucose were performed to detect the altered metabolites in high-invasive OSCC cells, low-invasive OSCC cells and normal human oral keratinocytes (HOK). The metabolic changes in the high-invasive and low-invasive cells included elevated glycolysis, increased fatty acid metabolism and an impaired TCA cycle compared with HOK. Moreover, pathway analysis demonstrated significant differences in fatty acid biosynthesis; arachidonic acid (AA) metabolism; and glycine, serine and threonine metabolism between the high-invasive and low-invasive cells. Furthermore, the high-invasive cells displayed a significant increase in the percentages of 13C-glycine, 13C-palmitate, 13C-stearic acid, 13C-oleic acid, 13C-AA and estimated FADS1/2 activities compared with the low-invasive cells. Overall, this exploratory study suggested that the metabolic differences related to the metastatic phenotypes of OSCC cells were concentrated in glycine metabolism, de novo fatty acid synthesis and polyunsaturated fatty acid (PUFA) metabolism, providing a comprehensive understanding of the metabolic alterations and a basis for studying related molecular mechanisms in metastatic OSCC cells.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/metabolismo , Linhagem Celular Tumoral , Glicina , Ácidos GraxosRESUMO
Background: Ureaplasma urealyticum, Chlamydia trachomatis, and Neisseria gonorrhoeae are the prevalent causes of several genital diseases worldwide; however, their characteristics in different genders have not been well documented in Shanghai. The aim of this study is to describe the prevalence of common pathogens among outpatients, considering variations by gender and age. Methods: From January 1, 2016, to December 31, 2021, the urogenital swabs of 16216 outpatients aged 3-95 years from two general hospitals in Shanghai were collected. All participants' swabs were investigated for U. urealyticum, C. trachomatis, and N. gonorrhoeae by isothermal RNA-based simultaneous amplification and testing. The basic information of all participants was also recorded, including age and gender. The chi-square test was used to compare the prevalence between different genders, age groups, and infection patterns. Results: There were 5,744 patients (35.42%) with positive samples whose ages ranged from 7 to 80 years (33.23 ± 8.63 years), and 62.14% of them were women. The most common pathogen detected was U. urealyticum (85.08%). The highest prevalence rate of all three pathogens was found in patients aged ≤ 20 years (40.53%, 95% confidence intervals [CI]: 33.80%-47.63%). The prevalent rate of U. urealyticum was higher in men (33.36%, 95% CI: 32.19%-34.55%). The overall prevalence rates of U. urealyticum, C. trachomatis, and N. gonorrhoeae were 30.14% (95% CI: 29.44%-30.85%), 6.00% (95% CI: 5.64%-6.38%), and 2.10% (95% CI: 1.89%-2.33%). Conclusions: Ureaplasma urealyticum was the most prevalent pathogen in the population, and its prevalence decreased with age. Young men aged ≤ 20 years were more frequently infected. Regular screening for sexually transmitted pathogens in different genders and age groups are warranted, particularly in young men.
Assuntos
Infecções por Chlamydia , Humanos , Masculino , Feminino , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Infecções por Chlamydia/diagnóstico , Pacientes Ambulatoriais , China/epidemiologia , Chlamydia trachomatis , Ureaplasma urealyticum , Neisseria gonorrhoeaeRESUMO
Aim: This study established a high-throughput multiplex genetic detection assay (HMGA) for rapid identification, semi-quantification and virulence analysis of Helicobacter pylori directly from the clinical non-invasive oral samples. Methods: The gastric mucosa and oral samples were collected from 242 patients in Shanghai from 2021 to 2022. All the samples were detected by routine clinical tests for H. pylori and Sanger sequenced for inconsistent results. A new multiplex PCR assay providing results within 4 hours was designed and optimized involving fluorescent dye-labeled specific primers targeted 16S rRNA gene, semi-quantitative gene ureC and 10 virulence genes of H. pylori. Semi-quantification was carried out by simulating the serial 10-fold dilutions of positive oral samples, and the H. pylori loads in different clinical samples were further compared. The mixed plasmids of virulence genes vacA s1, vacA m1 and vacA m2 were used to evaluate the performance on different genotypes. The consistency of 10 virulence genes in gastric mucosa, saliva, mouthwash and dental plaque of H. pylori-positive patients was compared. Results: The non-invasive HMGA was highly specific for detection of all 12 targets of H. pylori and human internal reference gene ß-globin, and the sensitivity to all target genes could reach 10 copies/µL. Compared with routine clinical tests and sequencing, non-invasive HMGA has a high level (>0.98) of sensitivity, specificity, accuracy, PPV, NPV and kappa coefficient for direct detection of H. pylori in oral samples. Moreover, by detecting peak area levels of ureC, it was confirmed that the H. pylori loads in gastric mucosa were significantly higher than those of the three kinds of oral samples (p<0.05). We also found that 45.0% (91/202) of patients had different H. pylori virulence genes in different oral samples. The concordance of positive detection rates of each virulence gene between saliva and gastric mucosa was more than 78% (p<0.05). Conclusion: The non-invasive HMGA proved to be a reliable method for the rapid H. pylori identification, semi-quantification and detection of 10 virulence genes directly in oral samples, providing a new idea for non-invasive detection of H. pylori.
Assuntos
Proteínas HMGA , Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/genética , Virulência/genética , Genótipo , RNA Ribossômico 16S/genética , China , Proteínas HMGA/genética , Infecções por Helicobacter/diagnóstico , Antígenos de Bactérias/genéticaRESUMO
Gallstone disease (GD) is one of the most common gastrointestinal diseases worldwide. Nowadays, intestinal microbiota are thought to play important roles in the formation of gallstones. In our study, human fecal samples were extracted for metagenomic next-generation sequencing (mNGS) on the Illumina HiSeq platform, followed by bioinformatics analyses. Our results showed that there was a particular intestinal micro-ecosystem in GD patients. In contrast to healthy people, the sequences of Bacteroidetes, Bacteroides and Thetaiotaomicron were obviously more abundant in GD patients at phylum, genus and species levels, respectively. On the other hand, the glycan metabolism and drug resistance, especially for the ß-lactams, were the most profound functions of gut microbes in GD patients compared to those in normal subjects. Furthermore, a correlation analysis drew out that there existed a significant relationship between the serum levels of biochemical indicators and abundances of intestinal microbes in GD patients. Our results illuminate both the composition and functions of intestinal microbiota in GD patients. All in all, our study can broaden the insight into the potential mechanism of how gut microbes affect the progression of gallstones to some extent, which may provide potential targets for the prevention, diagnosis or treatment of GD.
RESUMO
INTRODUCTION: Oral health is a fundamental component of well-being, and is closely associated with overall health and quality of life. Oral health may also affect the next generation. The children of mothers with poor oral health are likely to also have poor oral health as they go through life. We aim to investigate associations between maternal oral health and general health, pregnancy outcomes, offspring oral health and offspring general health. METHODS AND ANALYSIS: The Lifetime Impact of Oral Health study is a prospective, observational cohort study being done at a single centre in Chongqing, China. A total of 1000 pregnant women will be recruited in their first trimester (11-14 weeks gestation). After obtaining informed consent, general and oral health assessments will be undertaken. Maternal lifestyle, demographic data and biospecimens (blood, hair, urine, nail clippings, saliva, dental plaque, buccal, vaginal and anal swabs) will be collected. Pregnancy outcomes will be recorded at the time of delivery. Cord blood and placenta samples will be collected. The offspring will be followed up for general and oral health examinations, neurodevelopmental assessments and biospecimen (dental plaque, saliva, buccal swabs, exfoliated primary dentition, urine, hair, nail clippings) collection until they are 15 years old. Biological samples will undergo comprehensive metabolomic, microbiome and epigenome analyses. Associations between maternal oral health and general health, pregnancy outcomes, offspring oral health and offspring general health will be investigated and the underlying mechanisms explored. ETHICS AND DISSEMINATION: This project has been approved by the Research Ethics Committee of the Affiliated Hospital of Stomatology of Chongqing Medical University (CQHS-REC-2021 LSNo.23). Participants will be required to provide informed consent to participate in the study. Dissemination of findings will take the form of publications in peer-reviewed journals and presentations at national and international conferences. TRIAL REGISTRATION NUMBER: ChiCTR2100046898.
Assuntos
Placa Dentária , Saúde Bucal , Gravidez , Criança , Humanos , Feminino , Adolescente , Estudos de Coortes , Qualidade de Vida , Estudos Prospectivos , Estudos Observacionais como AssuntoRESUMO
Background: Urinary tract infections (UTIs) are one the most common infections. The rapid and accurate identification of uropathogens, and the determination of antimicrobial susceptibility, are essential aspects of the management of UTIs. However, existing detection methods are associated with certain limitations. In this study, a new urinary tract infection high-throughput multiplex genetic detection system (UTI-HMGS) was developed for the semi-quantitative detection of 18 pathogens and the simultaneously screening of nine resistance genes directly from the clinical urine sample within 4 hours. Methods: We designed and optimized a multiplex polymerase chain reaction (PCR) involving fluorescent dye-labeled specific primers to detect 18 pathogens and nine resistance genes. The specificity of the UTI-HMGS was tested using standard strains or plasmids for each gene target. The sensitivity of the UTI-HMGS assay was tested by the detection of serial tenfold dilutions of plasmids or simulated positive urine samples. We also collected clinical urine samples and used these to perform urine culture and antimicrobial susceptibility testing (AST). Finally, all urine samples were detected by UTI-HMGS and the results were compared with both urine culture and Sanger sequencing. Results: UTI-HMGS showed high levels of sensitivity and specificity for the detection of uropathogens when compared with culture and sequencing. In addition, ten species of bacteria and three species of fungi were detected semi-quantitatively to allow accurate discrimination of significant bacteriuria and candiduria. The sensitivity of the UTI-HMGS for the all the target genes could reach 50 copies per reaction. In total, 531 urine samples were collected and analyzed by UTI-HMGS, which exhibited high levels of sensitivity and specificity for the detection of uropathogens and resistance genes when compared with Sanger sequencing. The results from UTI-HMGS showed that the detection rates of 15 pathogens were significantly higher (P<0.05) than that of the culture method. In addition, there were 41(7.72%, 41/531) urine samples were positive for difficult-to-culture pathogens, which were missed detected by routine culture method. Conclusions: UTI-HMGS proved to be an efficient method for the direct semi-quantitative detection of 18 uropathogens and the simultaneously screening of nine antibiotic resistance genes in urine samples. The UTI-HMGS could represent an alternative method for the clinical detection and monitoring of antibiotic resistance.
Assuntos
Bacteriúria , Infecções Urinárias , Antibacterianos/uso terapêutico , Bactérias , Humanos , PlasmídeosRESUMO
Background: Sexually transmitted infections (STIs) are some of the most common communicable conditions and exert impact on the health and lives of many hundreds of millions of people across the world every year. Screening high-risk populations and conducting comprehensive detection tests would lead to a significant improvement in preventing the transmission of STIs and help us to provide rapid treatment to those affected. Here, we successfully established and validated a novel high-throughput multiplex gene detection system (HMGS) for the simultaneous and semiquantitative detection of six important curable sexually transmitted pathogens in a single reaction from secretions samples. Method: Fluorescently labeled primers were designed to target specific conserved and single-copy gene fragments of Ureaplasma urealyticum (U. urealyticum), Mycoplasma hominis (M. hominis), Chlamydia trachomatis (C. trachomatis), Neisseria gonorrhoeae (N. gonorrhoeae), Trichomonas vaginalis (T. vaginalis), and Treponema pallidum (T. pallidum). The specificity and sensitivity of the STI-HMGS was validated and optimized using plasmids and quantitative genomic DNA. Next, we validated the performances of the STI-HMGS for clinical application by testing samples of clinical secretions collected from patients who visited the gynecology and urology outpatient clinics of our reproductive medicine center. Results derived from the STI-HMGS were then compared with three approved commercialized kits that used to detect U. urealyticum, C. trachomatis and N. gonorrhoeae, respectively, followed by further validation with Sanger sequencing for all pathogens. Finally, a comprehensive analysis of epidemiology was performed among different subgroups to investigate the association between infection rates and clinically-relevant information. Results: The sensitivity of STI-HMGS for six target genes was 10 copies/µL. Data derived from the detection of 381 clinical secretions demonstrated that the STI-HMGS exhibited high concordance rate compared with approved commercialized kits and almost 100% sensitivity and specificity for the detection of six sexually transmitted pathogens when validated by Sanger sequencing. Semi-quantitative analysis found that STIs caused by N. gonorrhoeae had a significantly higher (P<0.05) pathogen load than the other pathogens. Infections caused by C. trachomatis were significantly more common in younger individuals (P<0.05). We also found that U. urealyticum infections were more likely to happen in females; while the males were more affected by N. gonorrhoeae (P<0.05). Conclusions: STI-HMGS proved to be an efficient method for the semi-quantitative detection of six important curable sexually transmitted pathogens and therefore represents an alternative method for the clinical detection and monitoring of STIs.
Assuntos
Chlamydia trachomatis , Trichomonas vaginalis , Chlamydia trachomatis/genética , Feminino , Genitália , Humanos , Masculino , Neisseria gonorrhoeae/genética , Trichomonas vaginalis/genética , Ureaplasma urealyticum/genéticaRESUMO
BACKGROUND & AIMS: To investigate the relationship between maternal serum fatty acid levels and gestational diabetes mellitus (GDM) subtypes across pregnancy. METHODS: A total of 680 singleton mothers enrolled in the Complex Lipids in Mothers and Babies (CLIMB) study in Chongqing, China were included. Clinical information and serum samples were collected at gestational weeks (GWs) 11-14, 22-28, and 32-34. 75 g Oral Glucose Tolerance Test (OGTT) was conducted at GW 24-28 and GDM subtypes divided into three groups using International Association of Diabetes and Pregnancy Study Group (IADPSG) guidelines criteria: elevated fasting plasma glucose (FPG group; n = 59); 1-h and/or 2-h post-load glucose (1h/2h-PG group; n = 94); combined group (FPG&1h/2h-PG group; n = 42). Non-GDM pregnancies were included (n = 485) as controls. Twenty fatty acids were quantified in serum using gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS: Overall, most serum fatty acid concentrations increased rapidly from the first to second trimester, followed by a plateauing or reduction in the third trimester (p < 0.001). In cross sectional analysis, fatty acid concentrations were significantly higher in the FPG group at GW 11-14 and decreased in the 1h/2h-PG group at GW 32-34, relative to controls. Moreover, higher α-linolenic acid (ALA; the second tertile: adjusted odds ratio [aOR] = 2.53, 95% CI: 1.17 to 5.47; the third tertile: aOR = 2.60, 95% CI: 1.20 to 5.65) and docosahexaenoic acid (DHA; the second tertile: aOR = 2.34, 95% CI: 1.10 to 4.97; the third tertile: aOR = 2.16, 95% CI: 1.00 to 4.63) were significantly associated with a higher risk of GDM in women with elevated fasting plasma glucose at GW 11-14 (first tertile as reference). CONCLUSIONS: Our findings highlight the importance of considering GDM subtypes for the individualised management of GDM in pregnancy. ALA and DHA in early pregnancy are associated with a higher risk of FPG-GDM subtype. This has widespread implications when recommending n-3 PUFAs supplementation for women with GDM.
Assuntos
Diabetes Gestacional/sangue , Ácidos Graxos/sangue , Trimestres da Gravidez/sangue , Adulto , Glicemia/análise , Estudos de Casos e Controles , China , Estudos Transversais , Ácidos Docosa-Hexaenoicos/sangue , Jejum/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Idade Gestacional , Teste de Tolerância a Glucose , Humanos , Gravidez , Ácido alfa-Linolênico/sangueRESUMO
The accurate detection of hydrogen peroxide (H2O2)-involved metabolites plays a significant role in the early diagnosis of metabolism-associated diseases, whereas most of current metabolite-sensing systems are often hindered by low sensitivity, interference of coexisting species, or tedious preparation. Herein, an electrochemistry-regenerated surface-enhanced Raman scattering (SERS) sensor was developed to serve as a universal platform for detecting H2O2-involved metabolites. The SERS sensor was constructed by modifying newly synthesized 2-mercaptohydroquinone (2-MHQ) molecules on the surface of gold nanoparticles (AuNPs) that were electrochemically predeposited on an ITO electrode. Metabolites were detected through the changes in the SERS spectrum as a result of the reaction of 2-MHQ with H2O2 induced by the metabolites. Combining the superiority of SERS fingerprint identification and the specificity of the related enzymatic reactions producing H2O2, the designed SERS sensor was highly selective in detecting glucose and uric acid as models of H2O2-involved metabolite with limits of detection (LODs) of 0.159 µM and 0.0857 µM, respectively. Moreover, the sensor maintained a high SERS activity even after more than 10 electrochemical regenerations within 2 min, demonstrating its effectiveness for the rapid detection of various metabolites with electrochemistry-driven regulation. Importantly, the presented SERS sensor showed considerable practicability for the detection of metabolites in real serum samples. Accordingly, the SERS sensor is a new detection platform for H2O2-involved metabolites detection in biological fluids, which may aid the early diagnosis of metabolism-related diseases.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Peróxido de Hidrogênio , Peróxidos , Análise Espectral RamanRESUMO
Specific inhibitors of hepatitis C virus (HCV) replication that target the NS3/4A protease (e.g., VX-950) or the NS5B polymerase (e.g., R1479/R1626, PSI-6130/R7128, NM107/NM283, and HCV-796) have advanced into clinical development. Treatment of patients with VX-950 or HCV-796 rapidly selected for drug-resistant variants after a 14-day monotherapy treatment period. However, no viral resistance was identified after monotherapy with R1626 (prodrug of R1479) or NM283 (prodrug of NM107) after 14 days of monotherapy. Based upon the rapid selection of resistance to the protease and nonnucleoside inhibitors during clinical trials and the lack of selection of resistance to the nucleoside inhibitors, we used the replicon system to determine whether nucleoside inhibitors demonstrate a higher genetic barrier to resistance than protease and nonnucleoside inhibitors. Treatment of replicon cells with nucleoside inhibitors at 10 and 15 times the 50% effective concentration resulted in clearance of the replicon, while treatment with a nonnucleoside or protease inhibitor selected resistant colonies. In combination, the presence of a nucleoside inhibitor reduced the frequency of colonies resistant to the other classes of inhibitors. These results indicate that the HCV replicon presents a higher barrier to the selection of resistance to nucleoside inhibitors than to nonnucleoside or protease inhibitors. Furthermore, the combination of a nonnucleoside or protease inhibitor with a nucleoside polymerase inhibitor could have a clear clinical benefit through the delay of resistance emergence.
Assuntos
Hepacivirus/efeitos dos fármacos , Nucleosídeos/farmacologia , Inibidores de Proteases/farmacologia , Replicon/genética , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Farmacorresistência Viral , Hepacivirus/genética , Hepacivirus/metabolismo , Oligopeptídeos/farmacologia , Serina Endopeptidases/metabolismo , Replicação Viral/efeitos dos fármacosRESUMO
PSI-6130 (beta-D-2'-deoxy-2'-fluoro-2'-C-methylcytidine) is a selective inhibitor of hepatitis C virus (HCV) replication that targets the NS5B polymerase. R7128, the prodrug of PSI-6130, has shown antiviral efficacy in patients chronically infected with HCV genotype 1a (GT-1a) and GT-1b. We observed that the compound exhibited potent in vitro activity against laboratory-optimized HCV replicons as well as against a panel of replicons containing NS5B HCV polymerases derived from GT-1a and GT-1b clinical isolates. We used the HCV replicon cell system to examine the emergence of variants with reduced sensitivity to PSI-6130. Short-term treatment of cells harboring the HCV subgenomic replicon with PSI-6130 cleared the replicon without generating resistant variants. Long-term culture of the cells under the compound selection generated the S282T substitution in a complex pattern with other amino acid substitutions in the NS5B polymerase. The presence of the coselected substitutions did not increase the moderate three- to sixfold loss of sensitivity to PSI-6130 mediated by the S282T substitution; however, their presence enhanced the replication capacity compared to the replication levels seen with the S282T substitution alone. We also observed a lack of cross-resistance between PSI-6130 and R1479 and demonstrated that long-term culture selection with PSI-6130 in replicon cells harboring preexisting mutations resistant to R1479 (S96T/N142T) results in the emergence of the S282T substitution and the reversion of S96T to wild-type serine. In conclusion, PSI-6130 presents a high barrier to resistance selection in vitro, selects for variants exhibiting only low-level resistance, and lacks cross-resistance with R1479, supporting the continued development of the prodrug R7128 as a therapeutic agent for the treatment of HCV infection.
Assuntos
Farmacorresistência Viral/genética , Variação Genética , Hepacivirus/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Replicon/genética , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/farmacologia , Linhagem Celular , Citidina/análogos & derivados , Citidina/química , Citidina/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacologia , Hepacivirus/enzimologia , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Dados de Sequência Molecular , Replicon/efeitos dos fármacos , Análise de Sequência de DNA , Proteínas não Estruturais Virais/genéticaRESUMO
Helicobacter pylori (H. pylori) infection is closely related to various gastroduodenal diseases. Virulence factors and bacterial load of H. pylori are associated with clinical outcomes, and drug-resistance severely impacts the clinical efficacy of eradication treatment. Existing detection methods are low-throughput, time-consuming and labor intensive. Therefore, a rapid and high-throughput method is needed for clinical diagnosis, treatment, and monitoring for H. pylori. High-throughput Multiplex Genetic Detection System (HMGS) assay was established to simultaneously detect and analyze a set of genes for H. pylori identification, quantification, virulence, and drug resistance by optimizing the singlet-PCR and multiple primers assay. Twenty-one pairs of chimeric primers consisted of conserved and specific gene sequences of H. pylori tagged with universal sequence at the 5' end were designed. Singlet-PCR assay and multiple primers assay were developed to optimize the HMGS. The specificity of HMGS assay was evaluated using standard H. pylori strains and bacterial controls. Six clinical isolates with known genetic background of target genes were detected to assess the accuracy of HMGS assay. Artificial mixed pathogen DNA templates were used to evaluate the ability to distinguish mixed infections using HMGS assay. Furthermore, gastric biopsy specimens with corresponding isolated strains were used to assess the capability of HMGS assay in detecting biopsy specimens directly. HMGS assay was specific for H. pylori identification. HMGS assay for H. pylori target genes detection were completely consistent with the corresponding genetic background. Mixed infection with different drug-resistant isolates of H. pylori could be distinguished by HMGS assay. HMGS assay could efficiently diagnose H. pylori infection in gastric biopsy specimens directly. HMGS assay is a rapid and high throughput method for the simultaneous identification and quantification of H. pylori, analysis of virulence and drug resistance in both isolated strains and biopsy specimens. It could also be used to distinguish the mixed infection with different resistant genotype strains. Furthermore, HMGS could detect H. pylori infection in gastric biopsy specimens directly.
RESUMO
AIM: We evaluated the direct high-throughput multiple genetic detection system (dHMGS) for Helicobacter pylori in gastric biopsies. MATERIALS & METHODS: One hundred and thirty-three specimens were concurrently analyzed by dHMGS, rapid urease test, culture and sequencing. RESULTS: dHMGS was highly sensitive and specific for H. pylori identification compared with culture and rapid urease test. The correlation coefficient of the quantitative standard curve was R2 = 0.983. A significant difference in the relative H. pylori DNA abundance was found in different gastroduodenal diseases. Concordance rates between dHMGS and sequencing for resistance mutations were 97.1, 100.0, 85.3 and 97.1%, respectively. Finally, dHMGS could efficiently distinguish mixed infection in biopsy specimens. CONCLUSION: The dHMGS could efficiently diagnose and quantify H. pylori burden in biopsies, simultaneously screening for virulence, antibiotic resistance and presence of the multistrain infections.
Assuntos
Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biópsia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Feminino , Infecções por Helicobacter/patologia , Helicobacter pylori/classificação , Helicobacter pylori/genética , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Urease/genética , Urease/metabolismo , Adulto JovemRESUMO
OBJECTIVE: To explore evaluation strategies for middle ear dysfunction in cleft palate patients, to optimize the diagnosis and treatment of this dysfunction, and ultimately to improve the comprehensive treatment of cleft palate. METHODS: The relationship among abnormal tympanic types (B, C, and Anomaly), effusion rate, tympanic pressure, and hearing loss were analyzed. We collected relevant information on 469 ears of cleft palate patients and traced one-year longitudinal changes in the tympana of 124 ears from 62 patients with both cleft lip and cleft palate. RESULTS: The effusion rates of cleft palate patients with type B, type C, and type Anomaly were 50.3% (97/193), 34.8% (8/23), and 20.9% (53/253), respectively. The tympanic pressure of the ears with and without effusion showed no significant difference (P>0.05). The hearing loss in type B cleft palate patients with middle ear effusion was worse than that in patients without effusion (P=0.001). However, the hearing loss in type Anomaly showed no difference (P>0.05). The constituent ratio of each tympanic type remained constant during the period between cheiloplasty and palatoplasty for cleft lip and palate patients (P>0.05). CONCLUSION: Cleft palate patients of all tympanic types may all suffer from middle ear effusion at different rates. Examination by centesis is suggested for ears with abnormal tympanic types. Early aggressive therapy is essential for type B cleft palate patients with middle ear effusion to avoid hearing loss. However, catheterization may be not necessary for type Anomaly patients, and conservative observation should be performed instead. Myringotomy with grommet insertion during palatoplasty does not delay treatment timing for patients with both cleft lip and cleft palateg.
Assuntos
Fissura Palatina , Orelha Média/fisiologia , Fenda Labial , Humanos , Ventilação da Orelha Média , Otite Média com Derrame/diagnóstico , Otite Média com Derrame/epidemiologiaRESUMO
RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2'-alpha-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of alpha-hydroxy moieties. 2'-deoxy-2'-beta-fluoro-4'-azidocytidine (RO-0622) and 2'-deoxy-2'-beta-hydroxy-4'-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC(50) = 171 +/- 12 nM and 24 +/- 3 nM for RO-9187 and RO-0622, respectively; CC(50) >1 mM for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4'-azidocytidine) or 2'-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC(50) values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2'-alpha-deoxy-4'-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.
Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/enzimologia , Hepatite C/tratamento farmacológico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Ribonucleosídeos/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacocinética , Antivirais/uso terapêutico , Células Cultivadas , Cães , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Genótipo , Hepacivirus/genética , Hepatite C/enzimologia , Hepatite C/genética , Hepatite C/virologia , Hepatócitos/enzimologia , Hepatócitos/virologia , Humanos , RNA Viral/biossíntese , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ratos , Ratos Wistar , Ribonucleosídeos/farmacocinética , Ribonucleosídeos/uso terapêutico , Replicação Viral/fisiologiaRESUMO
beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) is a potent inhibitor of hepatitis C virus (HCV) replication in the subgenomic HCV replicon system, and its corresponding 5'-triphosphate is a potent inhibitor of the HCV RNA polymerase in vitro. In this study the formation of PSI-6130-triphosphate was characterized in primary human hepatocytes. PSI-6130 and its 5'-phosphorylated derivatives were identified, and the intracellular concentrations were determined. In addition, the deaminated derivative of PSI-6130, beta-d-2'-deoxy-2'-fluoro-2'-C-methyluridine (RO2433, PSI-6026) and its corresponding phosphorylated metabolites were identified in human hepatocytes after incubation with PSI-6130. The formation of the 5'-triphosphate (TP) of PSI-6130 (PSI-6130-TP) and RO2433 (RO2433-TP) increased with time and reached steady state levels at 48 h. The formation of both PSI-6130-TP and RO2433-TP demonstrated a linear relationship with the extracellular concentrations of PSI-6130 up to 100 mum, suggesting a high capacity of human hepatocytes to generate the two triphosphates. The mean half-lives of PSI-6130-TP and RO2433-TP were 4.7 and 38 h, respectively. RO2433-TP also inhibited RNA synthesis by the native HCV replicase isolated from HCV replicon cells and the recombinant HCV polymerase NS5B with potencies comparable with those of PSI-6130-TP. Incorporation of RO2433-5'-monophosphate (MP) into nascent RNA by NS5B led to chain termination similar to that of PSI-6130-MP. These results demonstrate that PSI-6130 is metabolized to two pharmacologically active species in primary human hepatocytes.
Assuntos
Antivirais/farmacologia , Desoxicitidina/análogos & derivados , Hepacivirus/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , RNA Polimerases Dirigidas por DNA/metabolismo , Desoxicitidina/farmacologia , Hepacivirus/enzimologia , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Modelos Biológicos , Modelos Químicos , Fosfatos/química , Fosforilação , RNA Polimerase Dependente de RNA/metabolismo , Replicação ViralRESUMO
A series of 4'-substituted ribonucleoside derivatives has been prepared and evaluated for inhibition of hepatitis C virus (HCV) RNA replication in cell culture. The most potent and non-cytotoxic derivative was compound 28 (4'-azidocytidine, R1479) with an IC(50) of 1.28 microM in the HCV replicon system. The triphosphate of compound 28 was prepared and shown to be an inhibitor of RNA synthesis mediated by NS5B (IC(50)=320 nM), the RNA polymerase encoded by HCV. Data on related analogues have been used to generate some preliminary requirements for activity within this series of nucleosides.
Assuntos
Antivirais/química , Química Farmacêutica/métodos , Citidina/análogos & derivados , Hepacivirus/genética , Ribonucleosídeos/química , Replicação Viral/efeitos dos fármacos , Citidina/farmacologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Concentração Inibidora 50 , Modelos Químicos , Conformação Molecular , Nucleosídeos/química , RNA/química , UridinaRESUMO
The HCV polymerase is an attractive target for the development of new and specific anti-HCV drugs. Herein, the characterization of the inhibitory effect of 2'-C-Methyl-Cytidine shows that it is a potent inhibitor of both genotype 1b and 1a HCV replicon replication, both of laboratory-optimized as well as of NS5B clinical isolates-chimera replicons. The corresponding 5'-triphosphate derivative is a potent inhibitor of native HCV replicase isolated from replicon cells and of the recombinant genotype 1b and 1a HCV polymerase-mediated RNA synthesis. Resistance to 2'-C-Methyl-Cytidine was mapped to amino acid substitution S282T in the NS5B coding region. Cross-resistance was observed to 2'-C-Methyl-Adenosine but not to interferon alpha-2a, to non-nucleoside HCV polymerase inhibitors or to R1479, a new and potent nucleoside inhibitor of NS5B polymerase. In vitro studies mapped resistance to R1479 to amino acid substitutions S96T and S96T/N142T of the NS5B polymerase. These mutations did not confer resistance to 2-C-Methyl-Cytidine, thus confirming the lack of cross-resistance between these two HCV inhibitors. These data will allow the optimization of new polymerase inhibitors and their use in combination therapy.
Assuntos
Antivirais/farmacologia , Citidina/análogos & derivados , Farmacorresistência Viral , Genoma Viral , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Antivirais/química , Linhagem Celular , Citidina/química , Citidina/farmacologia , Hepacivirus/metabolismo , Humanos , Interferon-alfa/farmacologia , Estrutura Molecular , RNA Viral , Replicação Viral/efeitos dos fármacosRESUMO
Multiple nonnucleoside inhibitor binding sites have been identified within the hepatitis C virus (HCV) polymerase, including in the palm and thumb domains. After a single treatment with a thumb site inhibitor (thiophene-2-carboxylic acid NNI-1), resistant HCV replicon variants emerged that contained mutations at residues Leu419, Met423, and Ile482 in the polymerase thumb domain. Binding studies using wild-type (WT) and mutant enzymes and structure-based modeling showed that the mechanism of resistance is through the reduced binding of the inhibitor to the mutant enzymes. Combined treatment with a thumb- and a palm-binding polymerase inhibitor had a dramatic impact on the number of replicon colonies able to replicate in the presence of both inhibitors. A more exact characterization through molecular cloning showed that 97.7% of replicons contained amino acid substitutions that conferred resistance to either of the inhibitors. Of those, 65% contained simultaneously multiple amino acid substitutions that conferred resistance to both inhibitors. Double-mutant replicons Met414Leu and Met423Thr were predominantly selected, which showed reduced replication capacity compared to the WT replicon. These findings demonstrate the selection of replicon variants dually resistant to two NS5B polymerase inhibitors binding to different sites of the enzyme. Additionally, these findings provide initial insights into the in vitro mutational threshold of the HCV NS5B polymerase and the potential impact of viral fitness on the selection of multiple-resistant mutants.