Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(4): e1011316, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37058447

RESUMO

The presence of human cytomegalovirus (HCMV) in glioblastoma (GBM) and improved outcomes of GBM patients receiving therapies targeting the virus have implicated HCMV in GBM progression. However, a unifying mechanism that accounts for the contribution of HCMV to the malignant phenotype of GBM remains incompletely defined. Here we have identified SOX2, a marker of glioma stem cells (GSCs), as a key determinant of HCMV gene expression in gliomas. Our studies demonstrated that SOX2 downregulated promyelocytic leukemia (PML) and Sp100 and consequently facilitated viral gene expression by decreasing the amount of PML nuclear bodies in HCMV-infected glioma cells. Conversely, the expression of PML antagonized the effects of SOX2 on HCMV gene expression. Furthermore, this regulation of SOX2 on HCMV infection was demonstrated in a neurosphere assay of GSCs and in a murine xenograft model utilizing xenografts from patient-derived glioma tissue. In both cases, SOX2 overexpression facilitated the growth of neurospheres and xenografts implanted in immunodeficient mice. Lastly, the expression of SOX2 and HCMV immediate early 1 (IE1) protein could be correlated in tissues from glioma patients, and interestingly, elevated levels of SOX2 and IE1 were predictive of a worse clinical outcome. These studies argue that HCMV gene expression in gliomas is regulated by SOX2 through its regulation of PML expression and that targeting molecules in this SOX2-PML pathway could identify therapies for glioma treatment.


Assuntos
Glioma , Proteínas Imediatamente Precoces , Animais , Humanos , Camundongos , Citomegalovirus/fisiologia , Regulação para Baixo , Expressão Gênica , Glioma/genética , Glioma/patologia , Proteínas Imediatamente Precoces/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Stem Cells ; 42(6): 540-553, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393342

RESUMO

Exploring the mechanism of self-renewal and pluripotency maintenance of human embryonic stem cells (hESCs) is of great significance in basic research and clinical applications, but it has not been fully elucidated. Long non-coding RNAs (lncRNAs) have been shown to play a key role in the self-renewal and pluripotency maintenance of hESCs. We previously reported that the lncRNA ESRG, which is highly expressed in undifferentiated hESCs, can maintain the self-renewal and pluripotency of hPSCs. RNA pull-down mass spectrometry showed that ESRG could bind to other proteins, among which heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) attracted our attention. In this study, we showed that HNRNPA1 can maintain self-renewal and pluripotency of hESCs. ESRG bound to and stabilized HNRNPA1 protein through the ubiquitin-proteasome pathway. In addition, knockdown of ESRG or HNRNPA1 resulted in alternative splicing of TCF3, which originally and primarily encoded E12, to mainly encode E47 and inhibit CDH1 expression. HNRNPA1 could rescue the biological function changes of hESCs caused by ESRG knockdown or overexpression. Our results suggest that ESRG regulates the alternative splicing of TCF3 to affect CDH1 expression and maintain hESCs self-renewal and pluripotency by binding and stabilizing HNRNPA1 protein. This study lays a good foundation for exploring the new molecular regulatory mechanism by which ESRG maintains hESCs self-renewal and pluripotency.


Assuntos
Processamento Alternativo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Autorrenovação Celular , Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Humanos , Processamento Alternativo/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Autorrenovação Celular/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
J Cell Mol Med ; 28(11): e18463, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847472

RESUMO

Accumulating evidence suggests that a wide variety of cell deaths are deeply involved in cancer immunity. However, their roles in glioma have not been explored. We employed a logistic regression model with the shrinkage regularization operator (LASSO) Cox combined with seven machine learning algorithms to analyse the patterns of cell death (including cuproptosis, ferroptosis, pyroptosis, apoptosis and necrosis) in The Cancer Genome Atlas (TCGA) cohort. The performance of the nomogram was assessed through the use of receiver operating characteristic (ROC) curves and calibration curves. Cell-type identification was estimated by using the cell-type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) and single sample gene set enrichment analysis methods. Hub genes associated with the prognostic model were screened through machine learning techniques. The expression pattern and clinical significance of MYD88 were investigated via immunohistochemistry (IHC). The cell death score represents an independent prognostic factor for poor outcomes in glioma patients and has a distinctly superior accuracy to that of 10 published signatures. The nomogram performed well in predicting outcomes according to time-dependent ROC and calibration plots. In addition, a high-risk score was significantly related to high expression of immune checkpoint molecules and dense infiltration of protumor cells, these findings were associated with a cell death-based prognostic model. Upregulated MYD88 expression was associated with malignant phenotypes and undesirable prognoses according to the IHC. Furthermore, high MYD88 expression was associated with poor clinical outcomes and was positively related to CD163, PD-L1 and vimentin expression in the in-horse cohort. The cell death score provides a precise stratification and immune status for glioma. MYD88 was found to be an outstanding representative that might play an important role in glioma.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Glioma , Aprendizado de Máquina , Nomogramas , Humanos , Glioma/genética , Glioma/imunologia , Glioma/patologia , Prognóstico , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Morte Celular/genética , Masculino , Feminino , Curva ROC , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Transcriptoma , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
4.
J Transl Med ; 21(1): 494, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481555

RESUMO

BACKGROUND: Diabetes is associated with an increased risk of cognitive decline and dementia. These diseases are linked with mitochondrial dysfunction, most likely as a consequence of excessive formation of mitochondria-associated membranes (MAMs). Sirtuin3 (SIRT3), a key mitochondrial NAD+-dependent deacetylase, is critical responsible for mitochondrial functional homeostasis and is highly associated with neuropathology. However, the role of SIRT3 in regulating MAM coupling remains unknown. METHODS: Streptozotocin-injected diabetic mice and high glucose-treated SH-SY5Y cells were established as the animal and cellular models, respectively. SIRT3 expression was up-regulated in vivo using an adeno-associated virus in mouse hippocampus and in vitro using a recombinant lentivirus vector. Cognitive function was evaluated using behavioural tests. Hippocampus injury was assessed using Golgi and Nissl staining. Apoptosis was analysed using western blotting and TUNEL assay. Mitochondrial function was detected using flow cytometry and confocal fluorescence microscopy. The mechanisms were investigated using co-immunoprecipitation of VDAC1-GRP75-IP3R complex, fluorescence imaging of ER and mitochondrial co-localisation and transmission electron microscopy of structural analysis of MAMs. RESULTS: Our results demonstrated that SIRT3 expression was significantly reduced in high glucose-treated SH-SY5Y cells and hippocampal tissues from diabetic mice. Further, up-regulating SIRT3 alleviated hippocampus injuries and cognitive impairment in diabetic mice and mitigated mitochondrial Ca2+ overload-induced mitochondrial dysfunction and apoptosis. Mechanistically, MAM formation was enhanced under high glucose conditions, which was reversed by genetic up-regulation of SIRT3 via reduced interaction of the VDAC1-GRP75-IP3R complex in vitro and in vivo. Furthermore, we investigated the therapeutic effects of pharmacological activation of SIRT3 in diabetic mice via honokiol treatment, which exhibited similar effects to our genetic interventions. CONCLUSIONS: In summary, our findings suggest that SIRT3 ameliorates cognitive impairment in diabetic mice by limiting aberrant MAM formation. Furthermore, targeting the activation of SIRT3 by honokiol provides a promising therapeutic candidate for diabetes-associated cognitive dysfunction. Overall, our study suggests a novel role of SIRT3 in regulating MAM coupling and indicates that SIRT3-targeted therapies are promising for diabetic dementia patients.


Assuntos
Disfunção Cognitiva , Demência , Diabetes Mellitus Experimental , Neuroblastoma , Sirtuína 3 , Animais , Humanos , Camundongos , Disfunção Cognitiva/complicações , Diabetes Mellitus Experimental/complicações , Glucose , Mitocôndrias , Retículo Endoplasmático/metabolismo
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(6): 685-697, 2022 Jun 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-35837768

RESUMO

OBJECTIVES: Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignant tumor with unique geographical and ethnic distribution characteristics. NPC is mostly found in south China and Southeast Asia, and its treatment mainly depends on radiotherapy and chemotherapy. However, NPC is usually found in the late stage, and local recurrence and distant metastasis are common, leading to poor prognosis. The receptor tyrosine kinase AXL is up-regulated in various tumors and it is involved in tumor proliferation, migration, invasion, and other processes, which are associated with poor prognosis of tumors. This study aims to detect the expression of AXL in NPC cell lines and tissues, and to investigate its biological function of AXL and the underlying molecular mechanisms in regulation of NPC. METHODS: The expression levels of AXL in normal nasopharyngeal epithelial tissues and NPC tissues were analyzed by GSE68799, GSE12452, and GSE53819 data sets based on Gene Expression Omnibus (GEO) database. The Cancer Genome Atlas (TCGA) database was used to analyze the relationship between AXL and prognosis of head and neck squamous cell carcinoma (HNSC). The indicators of prognosis included overall survival (OS), disease-free interval (DFI), disease-specific survival (DSS), and progression-free interval (PFI). Western blotting assay was used to detect the AXL protein expression levels in normal nasopharyngeal epithelial cell line and NPC cell lines. Immunohistochemical method was used to detect AXL expression levels in normal nasopharyngeal epithelial tissues and NPC tissues. Cell lines with stable AXL knockdown were established by infecting 5-8F and Fadu cells with lentivirus interference vector, and cell lines with stable AXL overexpression were established by infecting C666-1 and HK-1 cells with lentivirus expression vector. Real-time PCR and Western blotting were used to detect the efficiency of knockdown and overexpression in stable cell lines. The effects of AXL knockdown or overexpression on proliferation, migration, and invasion of NPC cells were detected by CCK-8, plate colony formation, and Transwell assays, and the effect of AXL knockdown on tumor growth in nude mice was detected by subcutaneous tumor formation assay. The sequence of AXL upstream 2.0 kb promoter region was obtained by UCSC online database. The PROMO online database was used to predict AXL transcription factors with 0% fault tolerance, and the JASPAR online database was used to predict the binding sites of ETS1 to AXL. Real-time PCR and Western blotting were used to detect the effect of ETS1 on AXL protein and mRNA expression. The AXL upstream 2.0 kb promoter region was divided into 8 fragments, each of which was 250 bp in length. Primers were designed for 8 fragments. The binding of ETS1 to AXL promoter region was detected by chromatin immuno-precipitation (ChIP) assay to determine the direct regulatory relationship between ETS1 and AXL. Rescue assay was used to determine whether ETS1 affected the proliferation, migration, and invasion of NPC cells through AXL. RESULTS: Bioinformatics analysis showed that AXL was highly expressed in NPC tissues (P<0.05), and AXL expression was positively correlated with OS, DFI, DSS, and PFI in HNSC patients. Western blotting and immunohistochemical results showed that AXL was highly expressed in NPC cell lines and tissues compared with the normal nasopharyngeal epithelial cell line and tissues. Real-time PCR and Western blotting results showed that knockdown and overexpression efficiency in the stable cell lines met the requirements of subsequent experiments. The results of CCK-8, plate colony formation, Transwell assays and subcutaneous tumor formation in nude mice showed that down-regulation of AXL significantly inhibited the proliferation, migration, invasion of NPC cells and tumor growth (all P<0.05), and the up-regulation of AXL significantly promoted the proliferation, migration, and invasion of NPC cells (all P<0.05).As predicted by PROMO and JASPAR online databases, ETS1 was a transcription factor of AXL and had multiple binding sites in the AXL promoter region. Real-time PCR and Western blotting results showed that knockdown or overexpression of ETS1 down-regulated or up-regulated AXL protein and mRNA expression levels. ChIP assay result showed that ETS1 bound to AXL promoter region and directly regulate AXL expression. Rescue assay showed that AXL rescued the effects of ETS1 on proliferation, migration and invasion of NPC cells (P<0.05). CONCLUSIONS: AXL is highly expressed in NPC cell lines and tissues, which can promote the malignant progression of NPC, and its expression is regulated by transcription factor ETS1.


Assuntos
Neoplasias Nasofaríngeas , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/metabolismo , RNA Mensageiro/genética , Sincalida/metabolismo , Fatores de Transcrição/genética
6.
Cancer Cell Int ; 21(1): 276, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034744

RESUMO

BACKGROUND: Gliomas account for the majority of fatal primary brain tumors, and there is much room for research in the underlying pathogenesis, the multistep progression of glioma, and how to improve survival. In our study, we aimed to identify potential biomarkers or therapeutic targets of glioma and study the mechanism underlying the tumor progression. METHODS: We downloaded the microarray datasets (GSE43378 and GSE7696) from the Gene Expression Omnibus (GEO) database. Then, we used weighted gene co-expression network analysis (WGCNA) to screen potential biomarkers or therapeutic targets related to the tumor progression. ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumors using Expression data) algorithm and TIMER (Tumor Immune Estimation Resource) database were used to analyze the correlation between the selected genes and the tumor microenvironment. Real-time reverse transcription polymerase chain reaction was used to measure the selected gene. Transwell and wound healing assays were used to measure the cell migration and invasion capacity. Western blotting was used to test the expression of epithelial-mesenchymal transition (EMT) related markers. RESULTS: We identified specific module genes that were positively correlated with the WHO grade but negatively correlated with OS of glioma. Importantly, we identified that 6 collagen genes (COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, and COL5A2) could regulate the immunosuppressive microenvironment of glioma. Moreover, we found that these collagen genes were significantly involved in the EMT process of glioma. Finally, taking COL3A1 as a further research object, the results showed that knockdown of COL3A1 significantly inhibited the migration, invasion, and EMT process of SHG44 and A172 cells. CONCLUSIONS: In summary, our study demonstrated that collagen genes play an important role in regulating the immunosuppressive microenvironment and EMT process of glioma and could serve as potential therapeutic targets for glioma management.

7.
Cancer Cell Int ; 21(1): 383, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281539

RESUMO

Methyltransferase-like 7B (METTL7B) is a member of the methyltransferase-like protein family that plays an important role in the development and progression of tumors. However, its prognostic value and the correlation of METTL7B expression and tumor immunity in some cancers remain unclear. By analyzing online data, we found that METTL7B is abnormally overexpressed in multiple human tumors and plays an important role in the overall survival (OS) of patients with 8 cancer types and disease-free survival (DFS) of patients with 5 cancer types. Remarkably, METTL7B expression was positively correlated with the OS and DFS of patients with lower-grade glioma (LGG). In addition, a positive correlation between METTL7B expression and immune cell infiltration in LGG was observed. Moreover, we identified a strong correlation between METTL7B expression and immune checkpoint gene expression in kidney chromophobe (KICH), LGG and pheochromocytoma and paraganglioma (PCPG). Furthermore, METTL7B was involved in the extracellular matrix (ECM) and immune-related pathways in LGGs. Finally, in vitro experiments showed that knockdown of METTL7B inhibited the growth, migration, invasion and the epithelial-mesenchymal transition (EMT) of LGG cells. METTL7B expression potentially represents a novel prognostic biomarker due to its significant association with immune cell infiltration in LGG.

8.
Biochem Biophys Res Commun ; 514(1): 64-70, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31023529

RESUMO

Previously, we confirmed the anti-tumor effects of sodium butyrate (NaBu) in nasopharyngeal carcinoma (NPC). However, its molecular mechanisms have not be fully elucidated. In this study, we studied the effects of NaBu on autophagy and explored the relation between NaBu associated autophagy and apoptosis in NPC cells. EGFP-LC3 plasmids were introduced into NPC cells to observed the effects of NaBu on autophagy flux with or without chloroquine (CQ) addition. Autophagy markers were also detected by Western blot. Under NaBu treatment, autophagy and apoptosis markers were detected simultaneously at different time. Then, to explore the roles of autophagy in NaBu induced apoptosis, the effects of autophagy inhibition, via specific inhibitor treatment or key gene knockdown, were analyzed. At last, the upstream signaling and its roles in NaBu induced autophagy and apoptosis were also analyzed. Increased LC3 dots and LC3-II accumulation indicated that NaBu can promote autophagy flux in NPC cells. LC3-II accumulation was earlier than cleaved PARP increment suggesting autophagy activation is prior to apoptosis activation, which was validated by flow cytometry mediated apoptosis analysis. Moreover, autophagy inhibition, achieved by 3-MA treatment or BECN1 knockdown, can antagonize NaBu induced apoptosis reflecting by re-deregulated cPARP and apoptotic rates. Furthermore, NaBu treatment inhibited the AKT/mTOR axis indicated by deregulated p-AKT(S473) and p-mTOR(S2448) and ectopic AKT expression both suppressed NaBu induced autophagy and apoptosis. At last, Western blot showed that HDAC6 dependent EGFR deregulation may account for the NaBu associated AKT/mTOR inhibition. NaBu can induce autophagic apoptosis via suppressing AKT/mTOR axis in NPC cells. Our results suggest that combination of autophagy inhibitors and deacetylase inhibitors may not be recommended in NPC clinical treatment.


Assuntos
Antineoplásicos/farmacologia , Ácido Butírico/farmacologia , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular Autofágica/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores
9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 41(10): 1058-1063, 2016 Oct 28.
Artigo em Zh | MEDLINE | ID: mdl-27807328

RESUMO

OBJECTIVE: To explore the influence of preventive use of vasopressin tannate on diabetes insipidus and serum sodium at the early postoperation of craniopharyngioma.
 Methods: The data of 83 patients, who underwent unilateral sub-frontal approach resection of craniopharyngioma between 2010 and 2014 by the same senior neurosurgeon, were retrospectively analyzed. The patients were divided into a vasopressin tannate group (used group) and a control group. The diabetes insipidus and serum sodium changes were compared between the two groups.
 Results: Compared with the control group, the incidence of diabetes insipidus decreased at the early postoperation in the vasopressin tannate group (P<0.05). There was high incidence of diabetes insipidus in patients with pituitary stalk excision and tumor close adhesion to the third ventricle floor at the early postoperation (P<0.05). Under such conditions, the incidence of diabetes insipidus in the vasopressin tannate group was decreased compared with the control group (P<0.05). Postoperative hypernatremia occurred in 37 patients (44.6%), and hyponatremia occurred in 60 patients (72.3%), the average time of the occurrence of hpernatremia and hyponatremia was 1.4 and 3.7 days after surgery. Postoperative high serum sodium and low serum sodium appeared alternately in 19 patients (22.9%). There was significant difference in the serum sodium distribution in the first day after surgery in both groups (P<0.05), and the percent of hpernatremia in the vasopressin tannate group was significantly less than that in the control group (P<0.05).
 Conclusion: Preventive use of vasopressin tannate can effectively reduce diabetes insipidus and hypernatremia incidence at the early postoperative stage after microsurgery for craniopharyngioma.


Assuntos
Arginina Vasopressina/uso terapêutico , Craniofaringioma/complicações , Diabetes Insípido/prevenção & controle , Hipernatremia/prevenção & controle , Microcirurgia/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Craniofaringioma/cirurgia , Feminino , Humanos , Hipernatremia/epidemiologia , Hiponatremia/epidemiologia , Incidência , Masculino , Hipófise/cirurgia , Neoplasias Hipofisárias , Período Pós-Operatório , Estudos Retrospectivos
10.
Biochem Biophys Res Commun ; 460(2): 130-5, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25748575

RESUMO

Human embryonic stem cells(hESC) posses very promising application perspective in clinical transplant therapies for their characteristics of self-renewal and pluripotency. So efforts focusing on the mechanisms of the two characteristics are extremely important. ESRG, first identified by our group, is a candidate stemness gene of hESC for its much higher expression level in hESC comparing to that in 7-day embryoid bodies(EBs). Here, the proteins interacted with ESRG and its functions in hESC were explored. Yeast two-hybrid (Y2H) screening system was adopted to explore the interacting proteins of ESRG. Then Co-IP was performed to confirm the interactions between candidate proteins and ESRG. At last, the functions of validated interacting protein were explored by RNA interference(RNAi) and Western blot(WB). There were no autonomous activation and toxicity in the Y2H system, which verified its availability. Four candidate proteins, AAMP, DDT, GNB2L1 and COXII, were discovered, and the interaction between ESRG and COXII was ultimately confirmed. The expression of COXII in hESC was suppressed by siRNA, and the inhibited mitochondrial apoptosis was observed in hESC with downregulated COXII expression. Our work first validated the interaction between ESRG and COXII, and demonstrated that COXII serves as a pro-apoptotic protein in hESC. The results implied that ESRG may play an important role in regulating the apoptosis of hESC by interacting with COXII, and thus contribute a lot to the maintenance of hESC characteristics.


Assuntos
Apoptose , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células-Tronco Embrionárias/citologia , Sequência de Bases , Primers do DNA , Células-Tronco Embrionárias/enzimologia , Humanos , Reação em Cadeia da Polimerase
11.
Mol Carcinog ; 53(11): 858-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23908159

RESUMO

Previous studies have shown that promoter hypermethylation plays a key role in DLC-1 inactivation in nasopharyngeal carcinoma (NPC). However, DLC-1 mutation in NPC has not been reported, and there remain some discrepancies in methods and results between different groups. Here, we examined the mRNA and protein expression of DLC-1 in chronic nasopharyngitis (CN) and NPC tissues by reverse transcription-polymerase chain reaction/qPCR and immunohistochemistry, respectively. DLC-1 mRNA was undetectable in all the seven widely used NPC cell lines and absent or significantly down-regulated in 70% of NPC tissues. DLC-1 protein level was reduced in 74.3% of NPCs when compared with CN tissues, and significantly lower in NPC samples at advanced clinical stages than that at early stages. Then, we purified the same batch of specimens by microdissection and analyzed the possible mechanisms of DLC-1 downregulation with mutation and allelic loss analysis, methylation-specific PCR and bisulfite genomic sequencing. Only one mutation was detected at codon 693 of exon 8 in 3.3% of NPCs and five single nucleotide polymorphisms (SNPs) were identified. Loss of DLC-1 was detected in 23.3% of NPC tissues. The 100% of NPC cell lines, 80% of primary NPC and 22.2% of CN tissues showed methylation in DLC-1 promoter, while DLC-1 expression was recovered in seven NPC cell lines after 5-aza-dC treatment. Patched methylation assay confirmed that promoter methylation could repress DLC-1 expression. This report demonstrates that DLC-1 is negatively associated with NPC carcinogenesis, and promoter hypermethylation along with loss of heterozygosity, but not mutation, contributes to inactivation of DLC-1 in NPC.


Assuntos
Metilação de DNA/genética , Proteínas Ativadoras de GTPase/genética , Perda de Heterozigosidade , Neoplasias Nasofaríngeas/genética , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Sequência de Bases , Carcinoma , Regulação para Baixo , Feminino , Proteínas Ativadoras de GTPase/biossíntese , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Carcinoma Nasofaríngeo , Nasofaringite/genética , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/biossíntese , Análise de Sequência de DNA , Proteínas Supressoras de Tumor/biossíntese , Adulto Jovem
12.
NPJ Precis Oncol ; 8(1): 201, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271911

RESUMO

Tumor-associated macrophages (TAMs) play a vital role in glioma progression and are associated with poor outcomes in glioma patients. However, the specific roles of different subpopulations of TAMs remain poorly understood. Two distinct cell types, glioma and myeloid cells, were identified through single-cell sequencing analysis in gliomas. Within the TAMs-associated weighted gene co-expression network analysis (WGCNA) module, FPR3 emerged as a hub gene and was found to be expressed on CD163+ macrophages, while also being associated with clinical outcomes. Subsequently, a comprehensive assessment was undertaken to investigate the correlation between FPR3 expression and immune characteristics, revealing that FPR3 potentially plays a role in reshaping the glioma microenvironment. We identified a macrophage subset with the nonzero expression of CD163 and FPR3 (CD163+FPR3+). Using the expression profiles of CD163+FPR3+ macrophage-related signature, we employed ten machine learning algorithms to construct a prognostic model across six glioma cohorts. Subsequently, we employed an optimal algorithm to generate an artificial intelligence-driven prognostic signature specifically for CD163+FPR3+ macrophages. The development of this model was based on the average C-index observed in the aforementioned six cohorts. The risk score of this model consistently and effectively predicted overall survival, surpassing the accuracy of conventional clinical factors and 100 previously published signatures. Consequently, the CD163+FPR3+ macrophage-related score shows potential as a prognostic biomarker for glioma patients.

13.
Heliyon ; 10(5): e26976, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463788

RESUMO

Background: Glioma, a highly resistant and recurrent type of central nervous system tumor, poses a significant challenge in terms of effective drug treatments and its associated mortality rates. Despite the discovery of Ferredoxin 1 (FDX1) as a crucial participant in cuproptosis, an innovative mechanism of cellular demise, its precise implications for glioma prognosis and tumor immune infiltration remain inadequately elucidated. Methods: To analyze pan-cancer data, we employed multiple public databases. Gene expression evaluation was performed using tissue microarray (TMA) and single-cell sequencing data. Furthermore, four different approaches were employed to assess the prognostic importance of FDX1 in glioma. We conducted the analysis of differential expression genes (DEGs) and Gene Set Enrichment Analysis (GSEA) to identify immune-related predictive signaling pathways. Somatic mutations were assessed using Tumor Mutation Burden (TMB) and waterfall plots. Immune cell infiltration was evaluated with five different algorithms. Furthermore, we performed in vitro investigations to evaluate the biological roles of FDX1 in glioma. Results: Glioma samples exhibited upregulation of FDX1, which in turn predicted poor prognosis and was positively associated with unfavorable clinicopathological characteristics. Notably, the top four enriched signaling pathways were immune-related, and the discovery revealed a connection between the expression of FDX1 and the frequency of mutations or the TMB. The FDX1_high group exhibited heightened infiltration of immune cells, and there existed a direct association between the expression of FDX1 and the regulation of immune checkpoint. In vitro experiments demonstrated that FDX1 knockdown reduced proliferation, migration, invasion and transition from G2 to M phase in glioma cells. Conclusion: In glioma, FDX1 demonstrated a positive association with the advancement of malignancy and changes in the infiltration of immune cells.

14.
Int J Biol Macromol ; 262(Pt 2): 130032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342267

RESUMO

In recent years, remarkable strides have been made in the field of immunotherapy, which has emerged as a standard treatment for many cancers. As a kind of immunotherapy drug, monoclonal antibodies employed in immune checkpoint therapy have proven beneficial for patients with diverse cancer types. However, owing to the extensive heterogeneity of clinical responses and the complexity and variability of the immune system and tumor microenvironment (TME), accurately predicting its efficacy remains a challenge. Recent advances in aptamers provide a promising approach for monitoring alterations within the immune system and TME, thereby facilitating targeted immunotherapy, particularly focused on immune checkpoint blockade, with enhanced antitumor efficiency. Aptamers have been widely used in tumor cell detection, biosensors, drug discovery, and biomarker screening due to their high specificity and high affinity with their targets. This review aims to comprehensively examine the research status and progress of aptamers in cancer diagnosis and immunotherapy, with a specific emphasis on those related to immune checkpoints. Additionally, we will discuss the future research directions and potential therapeutic targets for aptamer-based immune checkpoint therapy, aiming to provide a theoretical basis for targeting immunotherapy molecules and blocking tumor immune escape.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Imunoterapia , Anticorpos Monoclonais/uso terapêutico , Oligonucleotídeos , Microambiente Tumoral
15.
J Zhejiang Univ Sci B ; 25(7): 541-556, 2024 Jul 15.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-39011675

RESUMO

The protein kinase B (Akt) pathway can regulate the growth, proliferation, and metabolism of tumor cells and stem cells through the activation of multiple downstream target genes, thus affecting the development and treatment of a range of diseases. Thioesterase superfamily member 4 (THEM4), a member of the thioesterase superfamily, is one of the Akt kinase-binding proteins. Some studies on the mechanism of cancers and other diseases have shown that THEM4 binds to Akt to regulate its phosphorylation. Initially, THEM4 was considered an endogenous inhibitor of Akt, which can inhibit the phosphorylation of Akt in diseases such as lung cancer, pancreatic cancer, and liver cancer, but subsequently, THEM4 was shown to promote the proliferation of tumor cells by positively regulating Akt activity in breast cancer and nasopharyngeal carcinoma, which contradicts previous findings. Considering these two distinct views, this review summarizes the important roles of THEM4 in the Akt pathway, focusing on THEM4 as an Akt-binding protein and its regulatory relationship with Akt phosphorylation in various diseases, especially cancer. This work provides a better understanding of the roles of THEM4 combined with Akt in the treatment of diseases.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Neoplasias/metabolismo , Proliferação de Células , Animais , Neoplasias da Mama/metabolismo , Feminino , Proteínas Adaptadoras de Transdução de Sinal
16.
Mol Neurobiol ; 61(11): 8531-8543, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38519735

RESUMO

Spinal cord injury (SCI) is a serious disease without effective therapeutic strategies. To identify the potential treatments for SCI, it is extremely important to explore the underlying mechanism. Current studies demonstrate that anoikis might play an important role in SCI. In this study, we aimed to identify the key anoikis-related genes (ARGs) providing therapeutic targets for SCI. The mRNA expression matrix of GSE45006 was downloaded from the Gene Expression Omnibus (GEO) database, and the ARGs were downloaded from the Molecular Signatures Database (MSigDB database). Then, the potential differentially expressed ARGs were identified. Next, correlation analysis, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) analysis were employed for the differentially expressed ARGs. Moreover, miRNA-gene networks were constructed by the hub ARGs. Finally, RNA expression of the top ten hub ARGs was validated in the SCI cell model and rat SCI model. A total of 27 common differentially expressed ARGs were identified at different time points (1, 3, 7, and 14 days) following SCI. The GO and KEGG enrichment analysis of these ARGs indicated several enriched terms related to proliferation, cell cycle, and apoptotic process. The PPI results revealed that most of the ARGs interacted with each other. Ten hub ARGs were further screened, and all the 10 genes were validated in the SCI cell model. In the rat model, only seven genes were validated eventually. We identified 27 differentially expressed ARGs of the SCI through bioinformatic analysis. Seven real hub ARGs (CCND1, FN1, IGF1, MYC, STAT3, TGFB1, and TP53) were identified eventually. These results may expand our understanding of SCI and contribute to the exploration of potential SCI targets.


Assuntos
Anoikis , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Traumatismos da Medula Espinal , Animais , Ratos , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Ontologia Genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo
17.
iScience ; 27(1): 108580, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38161417

RESUMO

In nasopharyngeal carcinoma (NPC), the TGF-ß/Smad pathway genes are altered with inactive TGF-ß signal, but the mechanisms remain unclear. RNA-sequencing results showed that FLOT2 negatively regulated the TGF-ß signaling pathway via up-regulating CD109 expression. qRT-PCR, western blot, ChIP, and dual-luciferase assays were used to identify whether STAT3 is the activating transcription factor of CD109. Co-IP immunofluorescence staining assays were used to demonstrate the connection between FLOT2 and STAT3. In vitro and in vivo experiments were used to detect whether CD109 could rescue the functional changes of NPC cells resulting from FLOT2 alteration. IHC and Spearman correlation coefficients were used to assay the correlation between FLOT2 and CD109 expression in NPC tissues. Our results found that FLOT2 promotes the development of NPC by inhibiting TGF-ß signaling pathway via stimulating the expression of CD109 by stabilizing STAT3, which provides a potential therapeutic strategy for NPC treatment.

18.
Bioact Mater ; 35: 242-258, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38333615

RESUMO

Induced pluripotent stem cells (iPSCs) can be personalized and differentiated into neural stem cells (NSCs), thereby effectively providing a source of transplanted cells for spinal cord injury (SCI). To further improve the repair efficiency of SCI, we designed a functional neural network tissue based on TrkC-modified iPSC-derived NSCs and a CBD-NT3-modified linear-ordered collagen scaffold (LOCS). We confirmed that transplantation of this tissue regenerated neurons and synapses, improved the microenvironment of the injured area, enhanced remodeling of the extracellular matrix, and promoted functional recovery of the hind limbs in a rat SCI model with complete transection. RNA sequencing and metabolomic analyses also confirmed the repair effect of this tissue from multiple perspectives and revealed its potential mechanism for treating SCI. Together, we constructed a functional neural network tissue using human iPSCs-derived NSCs as seed cells based on the interaction of receptors and ligands for the first time. This tissue can effectively improve the therapeutic effect of SCI, thus confirming the feasibility of human iPSCs-derived NSCs and LOCS for SCI repair and providing a valuable direction for SCI research.

19.
Mol Cancer ; 12: 53, 2013 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23758864

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a common malignant tumor in southern China and Southeast Asia, but its molecular mechanisms of pathogenesis are poorly understood. Our previous work has demonstrated that BCAT1 mRNA is over expressed in NPC and knocking down its expression in 5-8F NPC cell line can potently inhibit cell cycle progression and cell proliferation. However, the mechanism of BCAT1 up-regulation and its functional role in NPC development remain to be elucidated yet. METHODS: Immunohistochemistry (IHC) method was utilized to detect the expression of BCAT1 protein in NPC at different pathological stages. The roles of gene mutation, DNA amplification and transcription factor c-Myc in regulating BCAT1 expression were analyzed using PCR-sequencing, quantitative polymerase chain reaction (qPCR), IHC, ChIP and luciferase reporter system, respectively. The functions of BCAT1 in colony formation, cell migration and invasion properties were evaluated by RNA interference (RNAi). RESULTS: The positive rates of BCAT1 protein expression in normal epithelia, low-to-moderate grade atypical hyperplasia tissues, high-grade atypical hyperplasia tissues and NPC tissues were 23.6% (17/72), 75% (18/24), 88.9% (8/9) and 88.8% (71/80), respectively. Only one SNP site in exon1 was detected, and 42.4% (12/28) of the NPC tissues displayed the amplification of microsatellite loci in BCAT1. C-Myc could directly bind to the c-Myc binding site in promoter region of BCAT1 and up-regulate its expression. The mRNA and protein of c-Myc and BCAT1 were co-expressed in 53.6% (15/28) and 59.1% (13/22) of NPC tissues, respectively, and BCAT1 mRNA expression was also down-regulated in c-Myc knockdown cell lines. In addition, BCAT1 knockdown cells demonstrated reduced proliferation and decreased cell migration and invasion abilities. CONCLUSIONS: Our study indicates that gene amplification and c-Myc up-regulation are responsible for BCAT1 overexpression in primary NPC, and overexpression of BCAT1 induces cell proliferation, migration and invasion. The results suggest that BCAT1 may be a novel molecular target for the diagnosis and treatment of NPC.


Assuntos
Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Transaminases/metabolismo , Animais , Sequência de Bases , Carcinoma , Linhagem Celular , Movimento Celular/genética , Proliferação de Células , Éxons , Amplificação de Genes , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Mutação , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Invasividade Neoplásica , Estadiamento de Neoplasias , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transaminases/genética , Ensaio Tumoral de Célula-Tronco
20.
Biochem Biophys Res Commun ; 435(1): 160-4, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23628413

RESUMO

ESRG (embryonic stem cell related gene, also known as HESRG), is a novel human gene first cloned and identified by our group with microarray analysis. Interestingly, it is expressed specifically in undifferentiated human embryonic stem cells (hESCs), while its expression pattern and its role in hESCs remain unclear. Here, full-length 3151nt ESRG cDNA was further identified by RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) technique. Meanwhile, an alternatively splicing ESRG transcript (ESRG-B) of 2837nt in length was also found. Surprisingly, bioinformatics analyses showed that the open reading frames (ORFs) of ESRG and ESRG-B were identical. Both of them consist of 669nt and encode a 222aa protein with a predicted molecular size of 24 kDa. The ESRG protein was located in the nuclei of hESCs as demonstrated by immunocytochemical staining and Western blotting using ESRG specific antibody generated by us. In contrast, ESRG located in the cytoplasm of COS7 cells when it was forced to be expressed in these cells by gene transfection strategy, suggesting there may be some special proteins present only in hESCs which can help ESRG protein transport into the nuclei of hESCs. By spatial expression analysis, we further discovered that ESRG only expressed in the ovary tissue and hESCs instead of other tissues or cell lines. Our current data provide us with an important basis for conducting further studies on the functions and regulatory mechanisms underlying the role of ESRG in hESCs.


Assuntos
Núcleo Celular/metabolismo , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Proteínas/genética , Proteínas/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Células COS , Linhagem Celular , Chlorocebus aethiops , Citoplasma/metabolismo , Células-Tronco Embrionárias/citologia , Feminino , Feto/metabolismo , Humanos , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Ovário/embriologia , Ovário/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Longo não Codificante , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA