Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Langmuir ; 40(12): 6220-6228, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38471015

RESUMO

Sulfamethazine (SAT) is widely present in sediment, soil, rivers, and groundwater. Unfortunately, traditional water treatment technologies are inefficient at eliminating SAT from contaminated water. Therefore, developing an effective and ecologically friendly treatment procedure to effectively remove SAT is critical. This has raised concerns about its potential impact on the environment and human health. In this study, metal-organic-inorganic composites consisting of graphene-encapsulated Fe-Mn metal catalyst (Mn3Fe1-NC) were synthesized by calcining MnFe Prussian blue analogs (PBA) under a nitrogen atmosphere. The composites were applied to activate peroxymonosulfate (PMS) and facilitate the degradation of SAT in aquatic environments. The Mn3Fe1-NC, dosed with 5 mg, in combination with PMS, dosed with 1.5 mmol L-1, achieved a 91.8% degradation efficiency of SAT. The transformation of the CN skeleton led to the formation of a carbon shell structure, which consequently reduced metal ion leaching from the material. At various pH levels, the iron and manganese ions were observed to leach out at levels lower than 0.1392 and 0.0580 mg L-1, respectively. In contrast, the Mn3Fe1-NC was found to be minimally impacted by pH levels and coexisting ions present in the aqueous environment. Radical burst experiments and electrochemical analysis tests verified that degradation primarily occurs through the nonradical pathway of electron transfer. The active sites responsible for this process were identified as the Mn (IV) and graphitic-N atoms on the material, which facilitate direct electron transfer. Additionally, the presence of Fe atoms promotes the valence cycling of Mn atoms. This study introduces new insights into the reaction mechanism and the constitutive relationship of catalytic centers in nonradical oxidation reactions.

2.
Environ Sci Technol ; 52(15): 8627-8637, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29952547

RESUMO

Nanoscale zerovalent iron (nZVI) likely finds its application in source zone remediation. Two approaches to modify nZVI have been reported: bimetal (Fe-Me) and sulfidated nZVI (S-nZVI). However, previous research has primarily focused on enhancing particle reactivity with these two modifications under more plume-like conditions. In this study, we systematically compared the trichloroethene (TCE) dechlorination pathway, rate, and electron selectivity of Fe-Me (Me: Pd, Ni, Cu, and Ag), S-nZVI, and nZVI with excess TCE simulating source zone conditions. TCE dechlorination on Fe-Me was primarily via hydrogenolysis while that on S-nZVI and nZVI was mainly via ß-elimination. The surface-area normalized TCE reduction rate ( k'SA) of Fe-Pd, S-nZVI, Fe-Ni, Fe-Cu, and Fe-Ag were ∼6800-, 190-, 130-, 20-, and 8-fold greater than nZVI. All bimetallic modification enhanced the competing hydrogen evolution reaction (HER) while sulfidation inhibited HER. Fe-Cu and Fe-Ag negligibly enhanced electron utilization efficiency (εe) while Fe-Pd, Fe-Ni, and S-nZVI dramatically increased εe from 2% to ∼100%, 69%, and 72%, respectively. Adsorbed atomic hydrogen was identified to be responsible for the TCE dechlorination on Fe-Me but not on S-nZVI. The enhanced dechlorination rate along with the reduced HER of S-nZVI can be explained by that FeS conducting major electrons mediated TCE dechlorination while Fe oxides conducting minor electrons mediated HER.


Assuntos
Tricloroetileno , Halogenação , Hidrogênio , Concentração de Íons de Hidrogênio , Ferro
3.
Environ Sci Technol ; 51(17): 10100-10108, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28777912

RESUMO

Treatment of arsenic by zerovalent iron (ZVI) has been studied extensively. However, the effect of arsenic on the formation of ferric hydroxide precipitates in the ZVI treatment has not been investigated. We discovered that the specific surface area (ca. 187 m2/g) and arsenic content (ca. 67 mg/g) of the suspended solids (As-containing solids) generated in the ZVI treatment of arsenic solutions were much higher than the specific surface area (ca. 37 m2/g) and adsorption capacity (ca.12 mg/g) of the suspended solids (As-free solids) generated in the arsenic-free solutions. Arsenic in the As-containing solids was much more stable than the adsorbed arsenic in As-free solids. XRD, SEM, TEM, and selected area electron diffraction (SAED) analyses showed that the As-containing solids consisted of amorphous nanoparticles, while the As-free solids were composed of micron particles with weak crystallinity. Extended X-ray absorption fine structure (EXAFS) analysis determined that As(V) was adsorbed on the As-containing suspended solids and magnetic solid surfaces through bidentate binuclear complexation; and As(V) formed a mononuclear complex on the As-free suspended solids. The formation of the surface As(V) complexes retarded the bonding of free FeO6 octahedra to the oxygen sites on FeO6 octahedral clusters and prevented the growth of the clusters and their development into 3-dimensional crystalline phases.


Assuntos
Arsênio/química , Compostos Férricos/química , Adsorção , Ferro
4.
Environ Manage ; 58(6): 1046-1058, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27665617

RESUMO

Hazardous waste landfill sites are a significant source of groundwater pollution. To ensure that these landfills with a significantly high risk of groundwater contamination are properly managed, a risk-based ranking method related to groundwater contamination is needed. In this research, a risk-based prioritization method for the classification of groundwater pollution from hazardous waste landfills was established. The method encompasses five phases, including risk pre-screening, indicator selection, characterization, classification and, lastly, validation. In the risk ranking index system employed here, 14 indicators involving hazardous waste landfills and migration in the vadose zone as well as aquifer were selected. The boundary of each indicator was determined by K-means cluster analysis and the weight of each indicator was calculated by principal component analysis. These methods were applied to 37 hazardous waste landfills in China. The result showed that the risk for groundwater contamination from hazardous waste landfills could be ranked into three classes from low to high risk. In all, 62.2 % of the hazardous waste landfill sites were classified in the low and medium risk classes. The process simulation method and standardized anomalies were used to validate the result of risk ranking; the results were consistent with the simulated results related to the characteristics of contamination. The risk ranking method was feasible, valid and can provide reference data related to risk management for groundwater contamination at hazardous waste landfill sites.


Assuntos
Água Subterrânea/análise , Resíduos Perigosos/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , China , Análise por Conglomerados , Análise de Componente Principal , Eliminação de Resíduos/métodos , Medição de Risco
5.
Environ Technol ; 36(13-16): 2086-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798557

RESUMO

This research paper investigated a novel absorbent of calcium aluminate-rich cementitious materials (Friedel's salt adsorbent, FA) for aqueous hexavalent chromium (VI) removal. The adsorption kinetics showed that the maximum adsorption capacities of FA were 3.36, 14.66, and 26.17 mg/g when the initial Cr(VI) concentration was 10, 50, and 100 mg/L, respectively. The adsorption fitted with the pseudo-second-order kinetic model, suggesting the important roles of intercalation in the adsorption process with increasing Cr(VI) concentrations. This Friedel's salt adsorbent is suggested as an adaptive and effective adsorbent for Cr(VI) removal in contaminated groundwater.


Assuntos
Compostos de Alumínio/química , Óxido de Alumínio/química , Cloreto de Cálcio/química , Compostos de Cálcio/química , Cromo/isolamento & purificação , Ultrafiltração/métodos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adesivos/química , Adsorção , Cromo/química , Água Subterrânea/análise , Água Subterrânea/química , Resíduos Industriais/prevenção & controle
6.
Environ Technol ; 36(9-12): 1441-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25442404

RESUMO

In this study, the degradation of toluene-2,4-diamine (TDA) by persulphate (PS) in an aqueous solution at near-neutral pH was examined. The result showed that the degradation rate of TDA increased with increasing PS concentrations. The optimal dosage of PS in the reaction system was determined by efficiency indicator (I) coupling in the consumption of PS and decay half-life of TDA. Calculation showed that 0.74 mM of PS was the most effective dosage for TDA degradation, at that level the maximum I of 24.51 was obtained. PS can oxidize TDA for an extended reaction time period. Under neutral condition without activation, four degradation intermediates, 2,4-diamino-3-hydroxy-5-sulfonicacidtoluene, 2,4-diaminobenzaldehyde, 2,4-bis(vinylamino)benzaldehyde and 3,5-diamino-4-hydroxy-2-pentene, were identified by high-performance liquid chromatography-mass spectrometry. The tentative degradation pathway of TDA was proposed as well. It was found that hydroxyl radical played an important role in degradation of TDA with the activation of Fe2+, whereas PS anion and sulphate radicals were responsible for the degradation without activation of Fe2+.


Assuntos
Fenilenodiaminas/química , Sulfatos/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Ferro/química , Cinética
7.
Environ Sci Pollut Res Int ; 31(9): 14218-14228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277106

RESUMO

The main factor of the formation and deterioration in China's urban thermal environment is human activity, which is difficult to describe and measure. A new perspective on the effect of human activity on the urban thermal environment can be obtained by examining the interaction between location-based service (LBS) data and the urban thermal environment in China. However, relevant research is still limited. In this study, we used Tencent LBS data, Terra/Aqua MODIS land surface temperature (LST) data, and land use data to investigate the relationship between LBS and the urban thermal environment, specifically the LST and surface urban heat island intensity (SUHII) across China and its provinces. Our results showed that (1) in summer, the heat island effect was an issue in 94% of the urban areas in China, which was worse during the day. The high- and low-value periods of LBS data on a given day coincided with the acquisition times of MODIS LST products during the day and at night, respectively. (2) During both the day and at night, there was a significant connection between LBS data and the urban thermal environment in China. The highest correlation coefficient (r) between LBS data and the LST could reach 0.55 (p < 0.01) at the provincial level, and the highest correlation coefficient (r) between LBS data and the SUHII could reach 0.78 (p < 0.01) at the provincial level. (3) The urban thermal environment diurnal difference and LBS data exhibited a significant relationship. The ΔLBS diurnal differences were significantly positively related to the SUHII diurnal differences in China. The overall study findings revealed that LBS data constitute an important parameter to represent the human activity intensity when investigating the formation of the urban thermal environment in China.


Assuntos
Big Data , Temperatura Alta , Humanos , Cidades , Monitoramento Ambiental/métodos , Temperatura , China
8.
J Hazard Mater ; 476: 134952, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38944985

RESUMO

Natural attenuation (NA) is of great significance for the remediation of contaminated groundwater, and how to identify NA patterns of toluene in aquifers more quickly and effectively poses an urgent challenge. In this study, the NA of toluene in two typical soils was conducted by means of soil column experiment. Based on column experiments, dissolved organic matter (DOM) was rapidly identified using fluorescence spectroscopy, and the relationship between DOM and the NA of toluene was established through structural equation modeling analysis. The adsorption rates of toluene in clay and sandy soil were 39 % and 26 %, respectively. The adsorption capacity and total NA capacity of silty clay were large. The occurrence of fluorescence peaks of protein-like components and specific products indicated the occurrence of biodegradation. Arenimonas, Acidovorax and Brevundimonas were the main degrading bacteria identified in Column A, while Pseudomonas, Azotobacter and Mycobacterium were the main ones identified in Column B. The pH, ORP, and Fe(II) were the most important factors affecting the composition of microbial communities, which in turn affected the NA of toluene. These results provide a new way to quickly identify NA of toluene.


Assuntos
Biodegradação Ambiental , Tolueno , Tolueno/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Bactérias/metabolismo , Poluentes do Solo/química , Poluentes do Solo/análise , Espectrometria de Fluorescência , Microbiologia do Solo , Água Subterrânea/química , Fluorescência , Argila/química
9.
Water Res ; 260: 121912, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875858

RESUMO

Numerous investigations have illuminated the profound impact of phosphate on the adsorption of uranium, however, the effect of phosphate-mediated surface modification on the reactivity of zero-valent iron (ZVI) remained enigmatic. In this study, a phosphate-modified ZVI (P-ZVIbm) was prepared with a facile ball milling strategy, and compared with ZVIbm, the U(VI) removal amount (435.2 mg/g) and efficiency (3.52×10-3 g·mg-1·min-1) of P-ZVIbm were disclosed nearly 2.0 and 54 times larger than those of ZVIbm respectively. The identification of products revealed that the adsorption mechanism dominated the removal process for ZVIbm, while the reactive modified layer strengthened both the adsorption pattern and reduction performance on P-ZVIbm. DFT calculation result demonstrated that the binding configuration shifted from bidentate binuclear to multidentate configuration, further shortening the Fe-U atomic distance. More importantly, the electron transferred is more accessible through the surface phosphate layer, and selectively donated to U(VI), accounting for the elevated reduction performance of P-ZVIbm. This investigation explicitly underscores the critical role of ZVI's surface microenvironment in the domain of radioactive metal ion mitigation and introduces a novel methodology to amplify the sequestration of U(VI) from aqueous environments.


Assuntos
Ferro , Fosfatos , Ferro/química , Fosfatos/química , Adsorção , Urânio/química
10.
J Hazard Mater ; 471: 134248, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636237

RESUMO

Experimental scale and sampling precision are the main factors limiting the accuracy of migration and transformation assessments of complex petroleum-based contaminants in groundwater. In this study, a mesoscale indoor aquifer device with high environmental fidelity and monitoring accuracy was constructed, in which dissolved toluene and trichloroethylene were used as typical contaminants in a 1.5-year contaminant migration experiment. The process was divided into five stages, namely, pristine, injection, accumulation, decrease, and recovery, and characteristics such as differences in contaminant migration, the responsiveness of environmental factors, and changes in microbial communities were investigated. The results demonstrated that the mutual dissolution properties of the contaminants increased the spread of the plume and confirmed that toluene possessed greater mobility and natural attenuation than trichloroethylene. Attenuation of the contaminant plume proceeded through aerobic degradation, nitrate reduction, and sulfate reduction phases, accompanied by negative feedback from characteristic ion concentrations, dissolved oxygen content, the oxidation-reduction potential and microbial community structure of the groundwater. This research evaluated the migration and transformation characteristics of typical petroleum-based pollutants, revealed the response mechanism of the ecosystem to pollutant, provided a theoretical basis for predicting pollutant migration and formulating control strategies.

11.
Environ Sci Ecotechnol ; 15: 100243, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36896144

RESUMO

The potential release capacity of arsenic (As) from sediment was evaluated under a high level of exogenous organic matter (EOM) with both bioreactive and chemically reactive organic matters (OMs). The OMs were characterized by FI, HIX, BIX, and SUVA254 fluorescence indices showing the biological activities were kept at a high level during the experimental period. At the genus level, Fe/Mn/As-reducing bacteria (Geobacter, Pseudomonas, Bacillus, and Clostridium) and bacteria (Paenibacillus, Acidovorax, Delftia, and Sphingomonas) that can participate in metabolic transformation using EOM were identified. The reducing condition occurs which promoted As, Fe, and Mn releases at very high concentrations of OM. However, As release increased during the first 15-20 days, followed by a decline contributed by secondary iron precipitation. The degree of As release may be limited by the reactivity of Fe (hydro)oxides. The EOM infiltration enhances As and Mn releases in aqueous conditions causing the risk of groundwater pollution, which could occur in specific sites such as landfills, petrochemical sites, and managed aquifer recharge projects.

12.
J Hazard Mater ; 452: 131225, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958163

RESUMO

Little attention has been paid to the in situ-generated biogenic manganese oxides (BMnOx) for practical implementation in continuous groundwater remediation systems. The enrichment effects of manganese oxidizing bacteria (MOB) in bioaugmentation columns and the in situ-generated BMnOx for continuous thallium(I) (Tl(I)) removal from groundwater were investigated. Results indicated that Pseudomonas Putida MnB1 (strain MnB1) attached on the groundwater sediments (GS) can achieve a maximum of 97.37 % Mn(II) oxidation and generate 29.6 mg/L BMnOx, which was superior than that of traditional quartz sand (QS). The in situ-generated BMnOx in MOB_GS column effectively removed 10-100 µg/L Tl(I) under the interference of high concentrations of Fe(II) and Mn(II) in groundwater. Distinctive microbial enrichment effects occurred in the bioaugmentation columns under the competition of indigenous microbes in groundwater. The release of Mn(II) from the BMnOx inhibited with the decrease in Tl(I) removal efficiency. XAFS analysis revealed Tl(I) was effectively adsorbed by BMnOx and Mn-O octahedra with Tl-O tetrahedral coordination existed in BMnOx. This study provides an in-depth understanding of the in situ-generated BMnOx for the Tl(I) removal and contributes to the application of BMnOx in groundwater remediation.


Assuntos
Água Subterrânea , Manganês , Manganês/análise , Tálio/análise , Óxidos/análise , Compostos de Manganês , Oxirredução , Bactérias , Água Subterrânea/microbiologia
13.
Sci Total Environ ; 891: 164450, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245821

RESUMO

High geogenic Mn groundwater is widespread around the world and has also proved to be harmful to human health, especially to the IQ of Children. The natural release of Mn from aquifer sediments in slightly reducing condition is believed to be the primary cause. However, there isn't enough evidence to prove that anthropogenic activities promote the reductive release of Mn. Here a Historical Petrochemical Waste Storage Site (HPWSS) was studied to evaluate its impact on groundwater quality. Significantly elevated Mn, as well as elevated TDS, anionic surfactants, and organic pollutants, were found in the shallow aquifer (9-15 m) groundwater compared to the surrounding area. The Mn was believed to be generated in-situ, while others are caused by anthropogenic pollution. The good correlations between Mn and NH4+, HCO3-, I, As, Co, V, Ti, respectively, showed the Mn mobilization was mainly attributed to the reductive dissolution of Mn oxides/hydroxides. The potential processes leading to this enhanced Mn release are discussed, including 1) the infiltration of high salinity water which solubilized sediment organic matter (OM); 2) the anionic surfactants that promoted the dissolution and mobilization of surface-derived organic pollutants as well as sediment OM. Any of these processes may have provided a C source to stimulate the microbial reduction of Mn oxides/hydroxides. This study showed the input of pollutants could change the redox and dissolution conditions of the vadose zone and aquifer, causing a secondary geogenic pollution risk in groundwater. Since Mn is easily mobilized in suboxic condition as well as its toxicity, the enhanced release due to anthropogenic perturbation merits more attention.

14.
Environ Sci Pollut Res Int ; 30(46): 102446-102461, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37670088

RESUMO

Natural phosphorus-ferromanganese ore (NPO-NFMO) based composites by mechanical ball milling method, applying for the simultaneous remediation of arsenic (As) and lead (Pb) co-contaminated groundwater. Kinetic behavior adopted pseudo-second-order adsorption mechanism attaining equilibrium in 120 min over a wide pH range (2.0-6.0). NPO-NFMO realized higher adsorption capacity for As(III) (6.8 mg g-1) and Pb(II) (26.5 mg g-1) than those of single NPO (1.7 and 7.8 mg g-1) and NFMO (2.9 and 5.1 mg g-1), indicating that synergistic effects of NPO and NFMO considerably enhanced the adsorption capacity in mixed adsorption system. Fresh and used NPO-NFMO were characterized, and indicated that NPO-NFMO formed stable minerals of PbAs2O6 and PbFe2(AsO4)2(OH)2. The underlying adsorption mechanism indicated that As(III) and Pb(II) removal was involved with multiple mechanisms, including electrostatic adsorption, oxidation, complexation, and coprecipitation. The effects of key reaction parameters including mass ratios of NPO and NFMO, initial metal ion concentration, dosage, solution pH, and co-existing anions in groundwater were systematically investigated. The novel designed NPO-NFMO-based composites can be deemed as a promising amendment for simultaneous immobilization of As(III) and Pb(II) in co-contaminated soil and groundwater.

15.
J Hazard Mater ; 445: 130619, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056022

RESUMO

The increasing risk of organic contamination of groundwater poses a serious threat to the environment and human health, causing an urgent need to develop long-lasting and adaptable remediation materials. Controlled-release materials (CRMs) are capable of encapsulating oxidants to achieve long-lasting release properties in aquifers and considered to be effective strategies in groundwater remediation. In this study, novel hydrogels (ASGs) with thermosensitive properties were prepared based on agarose and silica to achieve controlled persulfate (PS) release. By adjusting the composition ratio, the gelation time and internal pore structure of the hydrogels were regulated for groundwater application, which in turn affected the PS encapsulated amount and release properties. The hydrogels exhibited significant temperature responsiveness, with 6.8 times faster gelation rates and 2.8 times longer controlled release ability at 10 â„ƒ than at 30 â„ƒ. The ASGs were further combined with zero-valent iron to achieve long-lasting degradation of the typical nitrobenzene compound 2,4-dinitrotoluene (2,4-DNT), and the degradation performance was maintained at 50 % within 14 PV, which was significantly improved compared with that of the PS/ZVI system. This study provided new concepts for the design of controlled-release materials and theoretical support for the remediation of organic contamination.

16.
Sci Total Environ ; 892: 164408, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257613

RESUMO

Using persulfate and environment-friendly gel solution as raw materials, persulfate gel sustained-release material (PGSR) and persulfate gelatin gel sustained-release material (G-PGSR) were developed. The main purpose of this study was to evaluate the potential of PGSR and G-PGSR in sustained release, migration and removal performance through column and tank experimental investigations. Results showed that the maximum release rates of PGSR and G-PGSR in water columns were 1.34 and 0.58 mg min-1 and the cumulative release amounts achieved 2950 and 2818 mg within 75 h, representing release efficiencies of 98.3 % and 93.9 %, respectively. In three sand columns, the maximum release rate was 0.32, 0.21, and 0.16 mg min-1 and the cumulative release achieved 473, 426, and 359 mg within 90 h with release efficiencies of 94.7 %, 85.3 %, and 71.7 %, respectively. Release time and rate of PGSR and G-PGSR are constrained by the permeability of porous media. G-PGSR in the sand tank exhibited migration and release characteristic with the slow-release diffusion effect. Lateral diffusion produced higher S2O82- concentration far beyond what was allowed in the tank. The saturated hydraulic conductivity decreased from 4.9 × 10-3, 1.1 × 10-3, and 4.9 × 10-4 cm s-1 to 2.4 × 10-3, 7.4 × 10-4, and 2.1 × 10-4 cm s-1 in columns filled with medium, fine, and silt, respectively. G-PGSR injection did not significantly change the order of magnitude of hydraulic conductivity. 2,4-dinitrotoluene removal performance was affected with the inlet flow rates, which decreased from 92 %, 82 %, and 78 % to 42 %, 28 %, and 8 % during 24 PV at the flow rate of 0.5, 1.5, and 4.5 mL min-1, respectively. Moreover, the removal efficiency was enhanced by G-PGSR with activated carbon as an activator. This study expands our understanding and ability of persulfate gel materials for groundwater remediation and provides a certain research basis for practical applications.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Preparações de Ação Retardada , Areia , Poluentes Químicos da Água/análise
17.
BMC Evol Biol ; 12: 208, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23083334

RESUMO

BACKGROUND: In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP) and sedoheptulose-1, 7-bisphosphate (SBP) are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase), while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1, 7-bisphosphatase (SBPase), respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario. RESULTS: Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II). Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations. CONCLUSIONS: There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins: SBPase share a common ancestor with the gluconeogenesis-specific Class I FBPase of epsilon-proteobacteria (or probably originated from that of the ancestor of epsilon-proteobacteria), while FBPase arise from Class I FBPase of an unknown kind of eubacteria. During the evolution of SBPase from eubacterial Class I FBPase, the SBP-dephosphorylation activity was acquired through the transition "from specialist to generalist". The evolutionary substitution of the endosymbiotic-origin cyanobacterial bifunctional F/SBPase by the two light-regulated substrate-specific enzymes made the regulation of the Calvin cycle more delicate, which contributed to the evolution of eukaryotic photosynthesis and even the entire photosynthetic eukaryotes.


Assuntos
Bactérias/enzimologia , Evolução Biológica , Frutose-Bifosfatase/genética , Monoéster Fosfórico Hidrolases/genética , Filogenia , Bactérias/genética , Fotossíntese/genética
18.
Ecotoxicol Environ Saf ; 86: 227-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23067547

RESUMO

Dissolved organic matter obtained from landfill leachate was separated into hydrophobic acid, base, neutral (HOA, HOB, HON) and hydrophilic (HIM) fractions. Fluorescence excitation-emission matrix spectra and parallel factor analysis were employed to characterize the composition, and fluorescence quenching titration technique was applied to study the complexation between Hg (II) and HON, HOA, and HIM fractions. Protein-like substances, humic-like compounds and xenobiotic organic matters (XOM) were identified in all fractions. The HOA, HOB and HON fractions comprised mainly XOM, while the HIM fraction consisted primarily of humic-like compounds. The complexation ability of protein-like substances was higher than that of humic-like compounds. The complexation ability of the HIM was highest for protein-like substances, while the complexation ability of the HON fraction was the highest for humic-like substances. The results suggested that the toxicity and bioavailability of the mercury in the young leachates was the highest, and decreased with landfill time.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Mercúrio/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Disponibilidade Biológica , Substâncias Húmicas/análise , Interações Hidrofóbicas e Hidrofílicas , Mercúrio/metabolismo , Eliminação de Resíduos , Espectrometria de Fluorescência , Fatores de Tempo , Poluentes Químicos da Água/metabolismo
19.
Environ Technol ; 33(16-18): 2033-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23240197

RESUMO

Dissolved organic matter was extracted from chicken manure after 1, 8, 16, 28 and 40 days of composting and characterized by combining elemental and spectroscopic methods with chemometric analysis to investigate the evolution of composting materials. The elemental and spectroscopic analysis results showed that the composting process was characterized by the biodegradation of aliphatics, polysaccharide and proteins, as well as by the synthesis of aromatic structures, humic-like substances and macromolecules. Principal component analysis and correlation analysis indicated that the data from elemental and spectroscopic analysis fell into three main groups, and corresponded to the biodegradation, aromatization, and humification and polymerization state of the composting materials. Hierarchical cluster analysis indicated rapid biodegradation of organic matter during the first eight days, and the formation of aromatic structures, humic-like materials and macromolecules in dissolved organic matter after eight days.


Assuntos
Esterco/análise , Compostos Orgânicos/análise , Solo/análise , Animais , Galinhas , Análise por Conglomerados , Análise de Componente Principal , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(9): 2528-33, 2012 Sep.
Artigo em Zh | MEDLINE | ID: mdl-23240432

RESUMO

In order to investigate remove characteristics of dissolved organic matter in landfill leachate, leachates were sampled during the process (i. e. , adjusting tank, anaerobic zone, oxidation ditch and MBR processing). Dissolved organic matter was extracted and its content and structure were characterized by fluorescence excitation-emission matrix spectra, UV-Vis specrtra and FTIR spectra. The results showed that an amount of 377.6 mg x L(-1) dissolved organic carbon (DOC) was removed during the whole treatment process, and the total removal rate was up to 78.34%. The 25.56% of DOC in the adjusting tank was removed during the anaerobic zone, 41.58% of DOC in anaerobic effluent was removed during the oxidation ditch, while 50.19% of DOC in the oxidation ditch effluent decreased in the MBR process. The anaerobic process increased the content of unsaturated compound and polysaccharides in leachate DOM, which improved the leachate biochemical characteristics. The unsaturated compound and polysaccharides were removed effectively during being in oxidation ditch. Protein-like and humic-like fluorescence peaks were observed in the adjusting tank and anaerobic zone, while humic-like fluorescence peaks were just presented in the oxidation ditch and MBR processing. Protein-like and fulvic-like substances were biodegraded in the adjusting tank and anaerobic zone, while humic-like materials were removed in the MBR process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA