Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(6): e1010251, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709291

RESUMO

More than a decade of genome-wide association studies (GWASs) have identified genetic risk variants that are significantly associated with complex traits. Emerging evidence suggests that the function of trait-associated variants likely acts in a tissue- or cell-type-specific fashion. Yet, it remains challenging to prioritize trait-relevant tissues or cell types to elucidate disease etiology. Here, we present EPIC (cEll tyPe enrIChment), a statistical framework that relates large-scale GWAS summary statistics to cell-type-specific gene expression measurements from single-cell RNA sequencing (scRNA-seq). We derive powerful gene-level test statistics for common and rare variants, separately and jointly, and adopt generalized least squares to prioritize trait-relevant cell types while accounting for the correlation structures both within and between genes. Using enrichment of loci associated with four lipid traits in the liver and enrichment of loci associated with three neurological disorders in the brain as ground truths, we show that EPIC outperforms existing methods. We apply our framework to multiple scRNA-seq datasets from different platforms and identify cell types underlying type 2 diabetes and schizophrenia. The enrichment is replicated using independent GWAS and scRNA-seq datasets and further validated using PubMed search and existing bulk case-control testing results.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA
2.
Bioinformatics ; 39(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707993

RESUMO

MOTIVATION: Small insertion and deletion (sindel) of human genome has an important implication for human disease. One important mechanism for non-coding sindel (nc-sindel) to have an impact on human diseases and phenotypes is through the regulation of gene expression. Nevertheless, current sequencing experiments may lack statistical power and resolution to pinpoint the functional sindel due to lower minor allele frequency or small effect size. As an alternative strategy, a supervised machine learning method can identify the otherwise masked functional sindels by predicting their regulatory potential directly. However, computational methods for annotating and predicting the regulatory sindels, especially in the non-coding regions, are underdeveloped. RESULTS: By leveraging labeled nc-sindels identified by cis-expression quantitative trait loci analyses across 44 tissues in Genotype-Tissue Expression (GTEx), and a compilation of both generic functional annotations and large-scale epigenomic profiles, we develop TIssue-specific Variant Annotation for Non-coding indel (TIVAN-indel), which is a supervised computational framework for predicting non-coding regulatory sindels. As a result, we demonstrate that TIVAN-indel achieves the best prediction performance in both with-tissue prediction and cross-tissue prediction. As an independent evaluation, we train TIVAN-indel from the 'Whole Blood' tissue in GTEx and test the model using 15 immune cell types from an independent study named Database of Immune Cell Expression. Lastly, we perform an enrichment analysis for both true and predicted sindels in key regulatory regions such as chromatin interactions, open chromatin regions and histone modification sites, and find biologically meaningful enrichment patterns. AVAILABILITY AND IMPLEMENTATION: https://github.com/lichen-lab/TIVAN-indel. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Epigenômica , Locos de Características Quantitativas , Humanos , Sequências Reguladoras de Ácido Nucleico , Cromatina , Mutação INDEL
3.
Psychol Med ; 54(2): 359-373, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37376848

RESUMO

BACKGROUND: Childhood is a crucial neurodevelopmental period. We investigated whether childhood reading for pleasure (RfP) was related to young adolescent assessments of cognition, mental health, and brain structure. METHODS: We conducted a cross-sectional and longitudinal study in a large-scale US national cohort (10 000 + young adolescents), using the well-established linear mixed model and structural equation methods for twin study, longitudinal and mediation analyses. A 2-sample Mendelian randomization (MR) analysis for potential causal inference was also performed. Important factors including socio-economic status were controlled. RESULTS: Early-initiated long-standing childhood RfP (early RfP) was highly positively correlated with performance on cognitive tests and significantly negatively correlated with mental health problem scores of young adolescents. These participants with higher early RfP scores exhibited moderately larger total brain cortical areas and volumes, with increased regions including the temporal, frontal, insula, supramarginal; left angular, para-hippocampal; right middle-occipital, anterior-cingulate, orbital areas; and subcortical ventral-diencephalon and thalamus. These brain structures were significantly related to their cognitive and mental health scores, and displayed significant mediation effects. Early RfP was longitudinally associated with higher crystallized cognition and lower attention symptoms at follow-up. Approximately 12 h/week of youth regular RfP was cognitively optimal. We further observed a moderately significant heritability of early RfP, with considerable contribution from environments. MR analysis revealed beneficial causal associations of early RfP with adult cognitive performance and left superior temporal structure. CONCLUSIONS: These findings, for the first time, revealed the important relationships of early RfP with subsequent brain and cognitive development and mental well-being.


Assuntos
Saúde Mental , Prazer , Adulto , Adolescente , Humanos , Criança , Estudos Longitudinais , Estudos Transversais , Leitura , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Cognição
4.
Neuroimage ; 269: 119928, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740028

RESUMO

BACKGROUND: The cerebellum is recognized as being involved in neurocognitive and motor functions with communication with extra-cerebellar regions relying on the white matter integrity of the cerebellar peduncles. However, the genetic determinants of cerebellar white matter integrity remain largely unknown. METHODS: We conducted a genome-wide association analysis of cerebellar white matter microstructure using diffusion tensor imaging data from 25,415 individuals from UK Biobank. The integrity of cerebellar white matter microstructure was measured as fractional anisotropy (FA) and mean diffusivity (MD). Identification of independent genomic loci, functional annotation, and tissue and cell-type analysis were conducted with FUMA. The linkage disequilibrium score regression (LDSC) was used to calculate genetic correlations between cerebellar white matter microstructure and regional brain volumes and brain-related traits. Furthermore, the conditional/conjunctional false discovery rate (condFDR/conjFDR) framework was employed to identify the shared genetic basis between cerebellar white matter microstructure and common brain disorders. RESULTS: We identified 11 genetic loci (P < 8.3 × 10-9) and 86 genes associated with cerebellar white matter microstructure. Further functional enrichment analysis implicated the involvement of GABAergic neurons and cholinergic pathways. Significant polygenetic overlap between cerebellar white matter tracts and their anatomically connected or adjacent brain regions was detected. In addition, we report the overall genetic correlation and specific loci shared between cerebellar white matter microstructural integrity and brain-related traits, including movement, cognitive, psychiatric, and cerebrovascular categories. CONCLUSIONS: Collectively, this study represents a step forward in understanding the genetics of cerebellar white matter microstructure and its shared genetic etiology with common brain disorders.


Assuntos
Encefalopatias , Substância Branca , Humanos , Imagem de Tensor de Difusão , Estudo de Associação Genômica Ampla , Encéfalo , Anisotropia
5.
Hum Brain Mapp ; 44(6): 2323-2335, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36692056

RESUMO

Temporal lobe epilepsy (TLE) is the most common type of intractable epilepsy in adults. Although brain myelination alterations have been observed in TLE, it remains unclear how the myelination network changes in TLE. This study developed a novel method in characterization of myelination structural covariance network (mSCN) by T1-weighted and T2-weighted magnetic resonance imaging (MRI). The mSCNs were estimated in 42 left TLE (LTLE), 42 right TLE (RTLE) patients, and 41 healthy controls (HCs). The topology of mSCN was analyzed by graph theory. Voxel-wise comparisons of myelination laterality were also examined among the three groups. Compared to HC, both patient groups showed decreased myelination in frontotemporal regions, amygdala, and thalamus; however, the LTLE showed lower myelination in left medial temporal regions than RTLE. Moreover, the LTLE exhibited decreased global efficiency compared with HC and more increased connections than RTLE. The laterality in putamen was differently altered between the two patient groups: higher laterality at posterior putamen in LTLE and higher laterality at anterior putamen in RTLE. The putamen may play a transfer station role in damage spreading induced by epileptic seizures from the hippocampus. This study provided a novel workflow by combination of T1-weighted and T2-weighted MRI to investigate in vivo the myelin-related microstructural feature in epileptic patients first time. Disconnections of mSCN implicate that TLE is a system disorder with widespread disruptions at regional and network levels.


Assuntos
Epilepsia do Lobo Temporal , Adulto , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Bainha de Mielina , Mapeamento Encefálico , Lobo Temporal , Imageamento por Ressonância Magnética/métodos , Lateralidade Funcional
6.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32672832

RESUMO

Circadian rhythms are oscillations of behavior, physiology and metabolism in many organisms. Recent advancements in omics technology make it possible for genome-wide profiling of circadian rhythms. Here, we conducted a comprehensive analysis of seven existing algorithms commonly used for circadian rhythm detection. Using gold-standard circadian and non-circadian genes, we systematically evaluated the accuracy and reproducibility of the algorithms on empirical datasets generated from various omics platforms under different experimental designs. We also carried out extensive simulation studies to test each algorithm's robustness to key variables, including sampling patterns, replicates, waveforms, signal-to-noise ratios, uneven samplings and missing values. Furthermore, we examined the distributions of the nominal $P$-values under the null and raised issues with multiple testing corrections using traditional approaches. With our assessment, we provide method selection guidelines for circadian rhythm detection, which are applicable to different types of high-throughput omics data.


Assuntos
Algoritmos , Ritmo Circadiano , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Animais , Simulação por Computador , Guias como Assunto , Camundongos
7.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32406914

RESUMO

With the development and decreasing cost of next-generation sequencing technologies, the study of the human microbiome has become a rapid expanding research field, which provides an unprecedented opportunity in various clinical applications such as drug response predictions and disease diagnosis. It is thus essential and desirable to build a prediction model for clinical outcomes based on microbiome data that usually consist of taxon abundance and a phylogenetic tree. Importantly, all microbial species are not uniformly distributed in the phylogenetic tree but tend to be clustered at different phylogenetic depths. Therefore, the phylogenetic tree represents a unique correlation structure of microbiome, which can be an important prior to improve the prediction performance. However, prediction methods that consider the phylogenetic tree in an efficient and rigorous way are under-developed. Here, we develop a novel deep learning prediction method MDeep (microbiome-based deep learning method) to predict both continuous and binary outcomes. Conceptually, MDeep designs convolutional layers to mimic taxonomic ranks with multiple convolutional filters on each convolutional layer to capture the phylogenetic correlation among microbial species in a local receptive field and maintain the correlation structure across different convolutional layers via feature mapping. Taken together, the convolutional layers with its built-in convolutional filters capture microbial signals at different taxonomic levels while encouraging local smoothing and preserving local connectivity induced by the phylogenetic tree. We use both simulation studies and real data applications to demonstrate that MDeep outperforms competing methods in both regression and binary classifications. Availability and Implementation: MDeep software is available at https://github.com/lichen-lab/MDeep Contact:chen61@iu.edu.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Microbiota , Modelos Biológicos , Envelhecimento , Artrite Reumatoide/microbiologia , Análise por Conglomerados , Feminino , Humanos , Malaui , Masculino , Filogenia , Fatores Sexuais , Estudos em Gêmeos como Assunto
8.
Brief Bioinform ; 22(1): 416-427, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31925417

RESUMO

Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes.


Assuntos
RNA-Seq/métodos , Análise de Célula Única/métodos , Software/normas , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Ilhotas Pancreáticas/metabolismo , Células MCF-7 , Glândulas Mamárias Animais/metabolismo , Camundongos , RNA-Seq/normas , Padrões de Referência , Análise de Célula Única/normas
9.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34021560

RESUMO

Understanding the functional consequence of noncoding variants is of great interest. Though genome-wide association studies or quantitative trait locus analyses have identified variants associated with traits or molecular phenotypes, most of them are located in the noncoding regions, making the identification of causal variants a particular challenge. Existing computational approaches developed for prioritizing noncoding variants produce inconsistent and even conflicting results. To address these challenges, we propose a novel statistical learning framework, which directly integrates the precomputed functional scores from representative scoring methods. It will maximize the usage of integrated methods by automatically learning the relative contribution of each method and produce an ensemble score as the final prediction. The framework consists of two modes. The first 'context-free' mode is trained using curated causal regulatory variants from a wide range of context and is applicable to predict regulatory variants of unknown and diverse context. The second 'context-dependent' mode further improves the prediction when the training and testing variants are from the same context. By evaluating the framework via both simulation and empirical studies, we demonstrate that it outperforms integrated scoring methods and the ensemble score successfully prioritizes experimentally validated regulatory variants in multiple risk loci.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Variação Genética , Modelos Estatísticos , RNA não Traduzido/genética , Sequências Reguladoras de Ácido Ribonucleico , Software , Algoritmos , Bases de Dados Genéticas , Regulação da Expressão Gênica , Humanos
10.
Biometrics ; 79(2): 915-925, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35184277

RESUMO

In contrast to differential gene expression analysis at the single-gene level, gene regulatory network (GRN) analysis depicts complex transcriptomic interactions among genes for better understandings of underlying genetic architectures of human diseases and traits. Recent advances in single-cell RNA sequencing (scRNA-seq) allow constructing GRNs at a much finer resolution than bulk RNA-seq and microarray data. However, scRNA-seq data are inherently sparse, which hinders the direct application of the popular Gaussian graphical models (GGMs). Furthermore, most existing approaches for constructing GRNs with scRNA-seq data only consider gene networks under one condition. To better understand GRNs across different but related conditions at single-cell resolution, we propose to construct Joint Gene Networks with scRNA-seq data (JGNsc) under the GGMs framework. To facilitate the use of GGMs, JGNsc first proposes a hybrid imputation procedure that combines a Bayesian zero-inflated Poisson model with an iterative low-rank matrix completion step to efficiently impute zero-inflated counts resulted from technical artifacts. JGNsc then transforms the imputed data via a nonparanormal transformation, based on which joint GGMs are constructed. We demonstrate JGNsc and assess its performance using synthetic data. The application of JGNsc on two cancer clinical studies of medulloblastoma and glioblastoma gains novel insights in addition to confirming well-known biological results.


Assuntos
Redes Reguladoras de Genes , Glioblastoma , Humanos , Análise de Sequência de RNA/métodos , Teorema de Bayes , RNA-Seq , Perfilação da Expressão Gênica/métodos , RNA/genética
11.
J Biol Chem ; 296: 100581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33771559

RESUMO

The formation of UV-induced DNA damage and its repair are influenced by many factors that modulate lesion formation and the accessibility of repair machinery. However, it remains unknown which genomic sites are prioritized for immediate repair after UV damage induction, and whether these prioritized sites overlap with hotspots of UV damage. We identified the super hotspots subject to the earliest repair for (6-4) pyrimidine-pyrimidone photoproduct by using the eXcision Repair-sequencing (XR-seq) method. We further identified super coldspots for (6-4) pyrimidine-pyrimidone photoproduct repair and super hotspots for cyclobutane pyrimidine dimer repair by analyzing available XR-seq time-course data. By integrating datasets of XR-seq, Damage-seq, adductSeq, and cyclobutane pyrimidine dimer-seq, we show that neither repair super hotspots nor repair super coldspots overlap hotspots of UV damage. Furthermore, we demonstrate that repair super hotspots are significantly enriched in frequently interacting regions and superenhancers. Finally, we report our discovery of an enrichment of cytosine in repair super hotspots and super coldspots. These findings suggest that local DNA features together with large-scale chromatin features contribute to the orders of magnitude variability in the rates of UV damage repair.


Assuntos
Dano ao DNA , Reparo do DNA/genética , Genoma Humano/genética , Genoma Humano/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Humanos , Dímeros de Pirimidina/metabolismo
12.
Psychol Med ; 52(7): 1333-1343, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32880241

RESUMO

BACKGROUND: Neuroimaging characteristics have demonstrated disrupted functional organization in schizophrenia (SZ), involving large-scale networks within grey matter (GM). However, previous studies have ignored the role of white matter (WM) in supporting brain function. METHODS: Using resting-state functional MRI and graph theoretical approaches, we investigated global topological disruptions of large-scale WM and GM networks in 93 SZ patients and 122 controls. Six global properties [clustering coefficient (Cp), shortest path length (Lp), local efficiency (Eloc), small-worldness (σ), hierarchy (ß) and synchronization (S) and three nodal metrics [nodal degree (Knodal), nodal efficiency (Enodal) and nodal betweenness (Bnodal)] were utilized to quantify the topological organization in both WM and GM networks. RESULTS: At the network level, both WM and GM networks exhibited reductions in Eloc, Cp and S in SZ. The SZ group showed reduced σ and ß only for the WM network. Furthermore, the Cp, Eloc and S of the WM network were negatively correlated with negative symptoms in SZ. At the nodal level, the SZ showed nodal disturbances in the corpus callosum, optic radiation, posterior corona radiata and tempo-occipital WM tracts. For GM, the SZ manifested increased nodal centralities in frontoparietal regions and decreased nodal centralities in temporal regions. CONCLUSIONS: These findings provide the first evidence for abnormal global topological properties in SZ from the perspective of a substantial whole brain, including GM and WM. Nodal centralities enhance GM areas, along with a reduction in adjacent WM, suggest that WM functional alterations may be compensated for adjacent GM impairments in SZ.


Assuntos
Conectoma , Esquizofrenia , Substância Branca , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
13.
Arterioscler Thromb Vasc Biol ; 41(10): 2575-2584, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34433297

RESUMO

Objective: Endothelial cells (ECs) that form the innermost layer of all vessels exhibit heterogeneous cell behaviors and responses to pro-angiogenic signals that are critical for vascular sprouting and angiogenesis. Once vessels form, remodeling and blood flow lead to EC quiescence, and homogeneity in cell behaviors and signaling responses. These changes are important for the function of mature vessels, but whether and at what level ECs regulate overall expression heterogeneity during this transition is poorly understood. Here, we profiled EC transcriptomic heterogeneity, and expression heterogeneity of selected proteins, under homeostatic laminar flow. Approach and Results: Single-cell RNA sequencing and fluorescence microscopy were used to characterize heterogeneity in RNA and protein gene expression levels of human ECs under homeostatic laminar flow compared to nonflow conditions. Analysis of transcriptome variance, Gini coefficient, and coefficient of variation showed that more genes increased RNA heterogeneity under laminar flow relative to genes whose expression became more homogeneous, although small subsets of cells did not follow this pattern. Analysis of a subset of genes for relative protein expression revealed little congruence between RNA and protein heterogeneity changes under flow. In contrast, the magnitude of expression level changes in RNA and protein was more coordinated among ECs in flow versus nonflow conditions. Conclusions: ECs exposed to homeostatic laminar flow showed overall increased heterogeneity in RNA expression levels, while expression heterogeneity of selected cognate proteins did not follow RNA heterogeneity changes closely. These findings suggest that EC homeostasis is imposed post-transcriptionally in response to laminar flow.


Assuntos
Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mecanotransdução Celular , RNA-Seq , Análise de Célula Única , Transcriptoma , Animais , Células Cultivadas , Humanos , Camundongos , Microscopia de Fluorescência , Fluxo Sanguíneo Regional , Estresse Mecânico
14.
Acta Neurol Scand ; 146(2): 144-151, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35506500

RESUMO

OBJECTIVES: To explore dynamic alterations of cortical thickness before and after successful anterior temporal lobectomy (ATL) in patients with unilateral mesial temporal lobe epilepsy (mTLE). MATERIALS AND METHODS: High-resolution T1-weighted MRI was obtained in 28 mTLE patients who achieved seizure freedom for at least 24 months after ATL and 29 healthy controls. Patients were scanned at five timepoints, including before surgery, 3, 6, 12 and 24 months after surgery. Preoperative cortical thickness of mTLE patients were compared with healthy controls. Dynamic alterations of cortical thickness before and after surgery were compared among five scans using linear mixed models. RESULTS: Patients with mTLE showed cortical thinning pre-surgically in ipsilateral entorhinal cortex, parahippocampal gyrus, inferior parietal cortex, lateral occipital cortex; contralateral pericalcarine cortex (PCC); and bilateral caudal middle frontal gyrus (cMFG), paracentral lobule, precentral gyrus (PCG), superior parietal cortex. Cortical thickening was observed in contralateral rostral anterior cingulate cortex (rACC). Patients showed postsurgical cortical thinning in ipsilateral temporal lobe, fusiform gyrus, caudal anterior cingulate cortex, lingual gyrus, and insula. Ipsilateral cMFG, PCC, and contralateral PCG showed significant cortical thickening after surgery. In addition, contralateral rACC showed cortical thickening at 3 months follow-up, however, with obvious cortical thinning at 24 months follow-up. CONCLUSIONS: Mesial temporal lobe epilepsy patients showed widespread cortical thinning before and after anterior temporal lobectomy. Progressive cortical thinning mainly existed in neighboring regions of resection. Postoperative cortical thickening may indicate cortical remodeling after successful surgery.


Assuntos
Epilepsia do Lobo Temporal , Lobectomia Temporal Anterior , Afinamento Cortical Cerebral , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Humanos , Imageamento por Ressonância Magnética , Lobo Temporal/cirurgia
15.
Brain Topogr ; 35(5-6): 692-701, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36074203

RESUMO

OBJECTIVES: To explore the resting state networks (RSNs) alterations in patients with unilateral mesial temporal lobe epilepsy (mTLE) before and after successful surgery. METHODS: Resting-state functional MRI and T1-weighted structural MRI were obtained in 37 mTLE patients who achieved seizure freedom after anterior temporal lobectomy. Patients were scanned before surgery and at two years after surgery. Twenty-eight age- and sex-matched healthy controls were scanned once. Functional connectivity (FC) changes within and between ten common RSNs before and after surgery, and FC changes between hippocampus and RSNs were explored. RESULTS: Before surgery, decreased FC was found within visual network and basal ganglia network, while after surgery, FC within basal ganglia network further decreased but FC within sensorimotor network and dorsal attention network increased. Before surgery, between-network FC related to basal ganglia network, visual network and dorsal attention network decreased, while between-network FC related to default mode network increased. After surgery, between-network FC related to visual network and dorsal attention network significantly increased. In addition, before surgery, ipsilateral hippocampus showed decreased FC with visual network, basal ganglia network, sensorimotor network, default mode network and frontoparietal network, while contralateral rostral hippocampus showed increased FC with salience network. After surgery, no obvious FC changes were found between contralateral hippocampus and these RSNs. CONCLUSION: MTLE patients showed significant RSNs alterations before and after surgery. Basal ganglia network showed progressive decline in functional connectivity. Successful surgery may lead to RSNs reorganization. These results provide preliminary evidence for postoperative functional remodeling at whole-brain-network level.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/cirurgia
16.
Nucleic Acids Res ; 48(1): 86-95, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31777938

RESUMO

Clustering is an essential step in the analysis of single cell RNA-seq (scRNA-seq) data to shed light on tissue complexity including the number of cell types and transcriptomic signatures of each cell type. Due to its importance, novel methods have been developed recently for this purpose. However, different approaches generate varying estimates regarding the number of clusters and the single-cell level cluster assignments. This type of unsupervised clustering is challenging and it is often times hard to gauge which method to use because none of the existing methods outperform others across all scenarios. We present SAME-clustering, a mixture model-based approach that takes clustering solutions from multiple methods and selects a maximally diverse subset to produce an improved ensemble solution. We tested SAME-clustering across 15 scRNA-seq datasets generated by different platforms, with number of clusters varying from 3 to 15, and number of single cells from 49 to 32 695. Results show that our SAME-clustering ensemble method yields enhanced clustering, in terms of both cluster assignments and number of clusters. The mixture model ensemble clustering is not limited to clustering scRNA-seq data and may be useful to a wide range of clustering applications.


Assuntos
Algoritmos , Análise de Sequência de RNA/estatística & dados numéricos , Análise de Célula Única/estatística & dados numéricos , Transcriptoma , Análise por Conglomerados , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
17.
Hum Brain Mapp ; 42(12): 4022-4034, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34110075

RESUMO

White matter (WM) microstructure deficit may be an underlying factor in the brain dysconnectivity hypothesis of schizophrenia using diffusion tensor imaging (DTI). However, WM dysfunction is unclear in schizophrenia. This study aimed to investigate the association between structural deficits and functional disturbances in major WM tracts in schizophrenia. Using functional magnetic resonance imaging (fMRI) and DTI, we developed the skeleton-based WM functional analysis, which could achieve voxel-wise function-structure coupling by projecting the fMRI signals onto a skeleton in WM. We measured the fractional anisotropy (FA) and WM low-frequency oscillation (LFO) and their couplings in 93 schizophrenia patients and 122 healthy controls (HCs). An independent open database (62 schizophrenia patients and 71 HCs) was used to test the reproducibility. Finally, associations between WM LFO and five behaviour assessment categories (cognition, emotion, motor, personality and sensory) were examined. This study revealed a reversed pattern of structure and function in frontotemporal tracts, as follows. (a) WM hyper-LFO was associated with reduced FA in schizophrenia. (b) The function-structure association was positive in HCs but negative in schizophrenia patients. Furthermore, function-structure dissociation was exacerbated by long illness duration and severe negative symptoms. (c) WM activations were significantly related to cognition and emotion. This study indicated function-structure dys-coupling, with higher LFO and reduced structural integration in frontotemporal WM, which may reflect a potential mechanism in WM neuropathologic processing of schizophrenia.


Assuntos
Imagem de Tensor de Difusão , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Esquizofrenia , Substância Branca , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/fisiopatologia
18.
Acta Neurol Scand ; 143(3): 261-270, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33058145

RESUMO

OBJECTIVES: To explore the dynamic changes of gray matter volume and intrinsic brain activity following anterior temporal lobectomy (ATL) in patients with unilateral mesial temporal lobe epilepsy (mTLE) who achieved seizure-free for 2 years. MATERIALS AND METHODS: High-resolution T1-weighted MRI and resting-state functional MRI data were obtained in ten mTLE patients at five serial timepoints: before surgery, 3, 6, 12, and 24 months after surgery. The gray matter volume (GMV) and amplitude of low-frequency fluctuations (ALFF) were compared among the five scans to depict the dynamic changes after ATL. RESULTS: After successful ATL, GMV decreased in several ipsilateral brain regions: ipsilateral insula, thalamus, and putamen showed gradual gray matter atrophy from 3 to 24 months, while ipsilateral superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, middle occipital gyrus, inferior occipital gyrus, caudate nucleus, lingual gyrus, and fusiform gyrus showed significant GMV decrease at 3 months follow-up, without further changes. Ipsilateral insula showed gradual ALFF decrease from 3 to 24 months after surgery. Ipsilateral superior temporal gyrus showed ALFF decrease at 3 months follow-up, without further changes. Ipsilateral thalamus and cerebellar vermis showed obvious ALFF increase after surgery. CONCLUSIONS: Surgical resection may lead to a short-term reduction of gray matter volume and intrinsic brain activity in neighboring regions, while the progressive gray matter atrophy may be due to possible intrinsic mechanism of mTLE. Dynamic ALFF changes provide evidence that disrupted focal spontaneous activities were reorganized after successful surgery.


Assuntos
Lobectomia Temporal Anterior/métodos , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/cirurgia , Substância Cinzenta/patologia , Adulto , Atrofia/patologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Encéfalo/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
19.
J Biol Chem ; 294(1): 210-217, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30413533

RESUMO

The unique nucleolar environment, the repetitive nature of ribosomal DNA (rDNA), and especially the possible involvement of RNA polymerase I (RNAPI) in transcription-coupled repair (TCR) have made the study of repair of rDNA both interesting and challenging. TCR, the transcription-dependent, preferential excision repair of the template strand compared with the nontranscribed (coding) strand has been clearly demonstrated in genes transcribed by RNAPII. Whether TCR occurs in rDNA is unresolved. In the present work, we have applied analytical methods to map repair events in rDNA using data generated by the newly developed XR-seq procedure, which measures excision repair genome-wide with single-nucleotide resolution. We find that in human and mouse cell lines, rDNA is not subject to TCR of damage caused by UV or by cisplatin.


Assuntos
Reparo do DNA , DNA Ribossômico/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Análise de Sequência de DNA , Transcrição Gênica , Animais , DNA Ribossômico/genética , Humanos , Camundongos , RNA Polimerase I/genética , RNA Polimerase II/genética
20.
J Biol Chem ; 294(15): 5914-5922, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30808711

RESUMO

Embryonic stem cells can self-renew and differentiate, holding great promise for regenerative medicine. They also employ multiple mechanisms to preserve the integrity of their genomes. Nucleotide excision repair, a versatile repair mechanism, removes bulky DNA adducts from the genome. However, the dynamics of the capacity of nucleotide excision repair during stem cell differentiation remain unclear. Here, using immunoslot blot assay, we measured repair rates of UV-induced DNA damage during differentiation of human embryonic carcinoma (NTERA-2) cells into neurons and muscle cells. Our results revealed that the capacity of nucleotide excision repair increases as cell differentiation progresses. We also found that inhibition of the apoptotic signaling pathway has no effect on nucleotide excision repair capacity. Furthermore, RNA-Seq-based transcriptomic analysis indicated that expression levels of four core repair factors, xeroderma pigmentosum (XP) complementation group A (XPA), XPC, XPG, and XPF-ERCC1, are progressively up-regulated during differentiation, but not those of replication protein A (RPA) and transcription factor IIH (TFIIH). Together, our findings reveal that increase of nucleotide excision repair capacity accompanies cell differentiation, supported by the up-regulated transcription of genes encoding DNA repair enzymes during differentiation of two distinct cell lineages.


Assuntos
Diferenciação Celular , Reparo do DNA , Células-Tronco de Carcinoma Embrionário/metabolismo , Células Musculares/metabolismo , Proteínas de Neoplasias/metabolismo , Neurônios/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco de Carcinoma Embrionário/patologia , Endonucleases/genética , Endonucleases/metabolismo , Humanos , Células Musculares/patologia , Proteínas de Neoplasias/genética , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA