Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 558, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877396

RESUMO

BACKGROUND: Wheat is one of the important grain crops in the world. The formation of lesion spots related to cell death is involved in disease resistance, whereas the regulatory pathway of lesion spot production and resistance mechanism to pathogens in wheat is largely unknown. RESULTS: In this study, a pair of NILs (NIL-Lm5W and NIL-Lm5M) was constructed from the BC1F4 population by the wheat lesion mimic mutant MC21 and its wild genotype Chuannong 16. The formation of lesion spots in NIL-Lm5M significantly increased its resistance to stripe rust, and NIL-Lm5M showed superiour agronomic traits than NIL-Lm5W under stripe rust infection.Whereafter, the NILs were subjected to transcriptomic (stage N: no spots; stage S, only a few spots; and stage M, numerous spots), metabolomic (stage N and S), and hormone analysis (stage S), with samples taken from normal plants in the field. Transcriptomic analysis showed that the differentially expressed genes were enriched in plant-pathogen interaction, and defense-related genes were significantly upregulated following the formation of lesion spots. Metabolomic analysis showed that the differentially accumulated metabolites were enriched in energy metabolism, including amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Correlation network diagrams of transcriptomic and metabolomic showed that they were both enriched in energy metabolism. Additionally, the contents of gibberellin A7, cis-Zeatin, and abscisic acid were decreased in leaves upon lesion spot formation, whereas the lesion spots in NIL-Lm5M leaves were restrained by spaying GA and cytokinin (CTK, trans-zeatin) in the field. CONCLUSION: The formation of lesion spots can result in cell death and enhance strip rust resistance by protein degradation pathway and defense-related genes overexpression in wheat. Besides, the formation of lesion spots was significantly affected by GA and CTK. Altogether, these results may contribute to the understanding of lesion spot formation in wheat and laid a foundation for regulating the resistance mechanism to stripe rust.


Assuntos
Morte Celular , Resistência à Doença , Doenças das Plantas , Reguladores de Crescimento de Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Citocininas/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Regulação da Expressão Gênica de Plantas
2.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698276

RESUMO

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Assuntos
Aegilops , Basidiomycota , Mapeamento Cromossômico , Resistência à Doença , Perfilação da Expressão Gênica , Genes de Plantas , Doenças das Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Aegilops/genética , Aegilops/microbiologia , Melhoramento Vegetal , Transcriptoma , Cromossomos de Plantas/genética , Puccinia/patogenicidade , Puccinia/fisiologia , Regulação da Expressão Gênica de Plantas
3.
Theor Appl Genet ; 137(1): 31, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267732

RESUMO

KEY MESSAGE: A co-located novel QTL for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs with potential of improving wheat yield was identified and validated. Spike-related traits, including fertile florets per spike (FFS), kernel weight per spike (KWS), total florets per spike (TFS), florets per spikelet (FPs), florets in the middle spikelet (FMs), fertile florets per spikelet (FFPs), and kernel weight per spikelet (KWPs), are key traits in improving wheat yield. In the present study, quantitative trait loci (QTL) for these traits evaluated under various environments were detected in a recombinant inbred line population (msf/Chuannong 16) mainly genotyped using the 16 K SNP array. Ultimately, we identified 60 QTL, but only QFFS.sau-MC-1A for FFS was a major and stably expressed QTL. It was located on chromosome arm 1AS, where loci for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs were also simultaneously co-mapped. The effect of QFFS.sau-MC-1A was further validated in three independent segregating populations using a Kompetitive Allele-Specific PCR marker. For the co-located QTL, QFFS.sau-MC-1A, the presence of a positive allele from msf was associate with increases for all traits: + 12.29% TFS, + 10.15% FPs, + 13.97% FMs, + 17.12% FFS, + 14.75% FFPs, + 22.17% KWS, and + 19.42% KWPs. Furthermore, pleiotropy analysis showed that the positive allele at QFFS.sau-MC-1A simultaneously increased the spike length, spikelet number per spike, and thousand-kernel weight. QFFS.sau-MC-1A represents a novel QTL for marker-assisted selection with the potential for improving wheat yield. Four genes, TraesCS1A03G0012700, TraesCS1A03G0015700, TraesCS1A03G0016000, and TraesCS1A03G0016300, which may affect spike development, were predicted in the physical interval harboring QFFS.sau-MC-1A. Our results will help in further fine mapping QFFS.sau-MC-1A and be useful for improving wheat yield.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Melhoramento Vegetal , Fenótipo , Genótipo
4.
BMC Genomics ; 24(1): 178, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020178

RESUMO

BACKGROUND: Fusarium crown rot (FCR) is a chronic disease of cereals worldwide. Compared with tetraploid wheat, hexaploid wheat is more resistant to FCR infection. The underlying reasons for the differences are still not clear. In this study, we compared FCR responses of 10 synthetic hexaploid wheats (SHWs) and their tetraploid and diploid parents. We then performed transcriptome analysis to uncover the molecular mechanism of FCR on these SHWs and their parents. RESULTS: We observed higher levels of FCR resistance in the SHWs compared with their tetraploid parents. The transcriptome analysis suggested that multiple defense pathways responsive to FCR infection were upregulated in the SHWs. Notably, phenylalanine ammonia lyase (PAL) genes, involved in lignin and salicylic acid (SA) biosynthesis, exhibited a higher level of expression to FCR infection in the SHWs. Physiological and biochemical analysis validated that PAL activity and SA and lignin contents of the stem bases were higher in SHWs than in their tetraploid parents. CONCLUSION: Overall, these findings imply that improved FCR resistance in SHWs compared with their tetraploid parents is probably related to higher levels of response on PAL-mediated lignin and SA biosynthesis pathways.


Assuntos
Fusarium , Fusarium/fisiologia , Tetraploidia , Lignina , Poaceae , Genótipo , Doenças das Plantas/genética , Resistência à Doença/genética
5.
Theor Appl Genet ; 136(6): 137, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233855

RESUMO

KEY MESSAGE: This study reported validation and fine mapping of a Fusarium crown rot resistant locus on chromosome arm 6HL in barley using near isogenic lines, transcriptome sequences, and a large near isogenic line-derived population. Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is a chronic and serious disease affecting cereal production in semi-arid regions globally. The increasing prevalence of this disease in recent years is attributed to the widespread adoption of minimum tillage and stubble retention practices. In the study reported here, we generated eight pairs of near isogenic lines (NILs) targeting a putative QTL (Qcrs.caf-6H) conferring FCR resistance in barley. Assessing the NILs confirmed the large effect of this locus. Aimed to develop markers that can be reliably used in incorporating this resistant allele into breeding programs and identify candidate genes, transcriptomic analyses were conducted against three of the NIL pairs and a large NIL-derived population consisting of 1085 F7 recombinant inbred lines generated. By analyzing the transcriptomic data and the fine mapping population, Qcrs.caf-6H was delineated into an interval of 0.9 cM covering a physical distance of ~ 547 kb. Six markers co-segregating with this locus were developed. Based on differential gene expression and SNP variations between the two isolines among the three NIL pairs, candidate genes underlying the resistance at this locus were detected. These results would improve the efficiency of incorporating the targeted locus into barley breeding programs and facilitate the cloning of causal gene(s) responsible for the resistance.


Assuntos
Fusarium , Hordeum , Locos de Características Quantitativas , Hordeum/genética , Braço , Melhoramento Vegetal , Perfilação da Expressão Gênica , Cromossomos , Doenças das Plantas/genética
6.
Theor Appl Genet ; 136(9): 181, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550493

RESUMO

KEY MESSAGE: A likely new locus QSns.sau-MC-3D.1 associated with SNS showing no negative effect on yield-related traits compared to WAPO1 was identified and validated in various genetic populations under multiple environments. The number of spikelets per spike (SNS) is one of the crucial factors determining wheat yield. Thus, improving our understanding of the genes that regulate SNS could help develop wheat varieties with higher yield. In this study, a recombinant inbred line (RIL) population (MC) containing 198 lines derived from a cross between msf and Chuannong 16 (CN16) was used to construct a genetic linkage map using the GenoBaits Wheat 16 K Panel. The genetic map contained 5,991 polymorphic SNP markers spanning 2,813.25 cM. A total of twelve QTL for SNS were detected, and two of them, i.e., QSns.sau-MC-3D.1 and QSns.sau-MC-7A, were stably expressed. QSns.sau-MC-3D.1 had high LOD values ranging from 4.99 to 11.06 and explained 9.71-16.75% of the phenotypic variation. Comparison of QSns.sau-MC-3D.1 with previously reported SNS QTL suggested that it is likely a novel one, and two kompetitive allele-specific PCR (KASP) markers were further developed. The positive effect of QSns.sau-MC-3D.1 was also validated in three biparental populations and a diverse panel containing 388 Chinese wheat accessions. Genetic analysis indicated that WHEAT ORTHOLOG OFAPO1 (WAPO1) was a candidate gene for QSns.sau-MC-7A. Pyramiding of QSns.sau-MC-3D.1 and WAP01 had a great additive effect increasing SNS by 7.10%. Correlation analysis suggested that QSns.sau-MC-3D.1 was likely independent of effective tiller number, plant height, spike length, anthesis date, and thousand kernel weight. However, the H2 haplotype of WAPO1 may affect effective tiller number and plant height. These results indicated that utilization of QSns.sau-MC-3D.1 should be given priority for wheat breeding. Geographical distribution analysis showed that the positive allele of QSns.nsau-MC-3D.1 was dominant in most wheat-producing regions of China, and it has been positively selected among modern cultivars released in China since the 1940s. Gene prediction, qRT-PCR analysis, and sequence alignment suggested that TraesCS3D03G0216800 may be the candidate gene of QSns.nsau-MC-3D.1. Taken together, these results enrich our understanding of the genetic basis of wheat SNS and will be useful for fine mapping and cloning of the gene underlying QSns.sau-MC-3D.1.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico/métodos , Triticum/genética , Melhoramento Vegetal , Fenótipo
7.
Theor Appl Genet ; 136(4): 90, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000252

RESUMO

KEY MESSAGE: Two major and stably expressed QTL for traits related to mature wheat embryo independent of kernel size were identified and validated in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces. As the juvenile of a highly differentiated plant, mature wheat (Triticum aestivum L.) embryos are highly significant to agricultural production. To understand the genetic basis of traits related to wheat embryo size, the embryo of mature kernels in a recombination inbred line that contained 126 lines from four environments was measured. The genetic loci of embryo size, including embryo length (EL), embryo width (EW), embryo area (EA), embryo length/kernel length (EL/KL), embryo width/kernel width (EW/KW), and EL/EW, were identified based on a genetic linkage map constructed based on PCR markers and the Wheat 55 K single nucleotide polymorphism (SNP) array. A total of 50 quantitative trait loci (QTL) for traits related to wheat embryo size were detected. Among them, QEL.sicau-2SY-4A for EL and QEW.sicau-2SY-7B for EW were major and stably expressed and were genetically independent of KL and KW, respectively. Their effects were further verified in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces. Further analysis showed that TraesCS4A02G343300 and TraesCS7B02G006800 could be candidate genes for QEL.sicau-2SY-4A and QEW.sicau-2SY-7B, respectively. In addition, significant positive correlations between EL and kernel-related traits and the 1,000-grain weight were detected. Collectively, this study broadens our understanding of the genetic basis of wheat embryo size and will be helpful for the further fine-mapping of interesting loci in the future.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico , Fenótipo , Grão Comestível/genética , Polimorfismo de Nucleotídeo Único
8.
Theor Appl Genet ; 136(4): 67, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952028

RESUMO

KEY MESSAGE: Combined with BSE-Seq analysis and multiple genetic populations, three genes involved in stripe rust resistance were identified in Chinese wheat landrace Dahongpao, including a novel suppressor on 2BS. Dahongpao (DHP), a landrace of hexaploid wheat in China, exhibits a high degree of stripe rust resistance in the field for many years. In this study, bulked segregant analysis coupled with exome capture sequencing (BSE-Seq) was used to identify genes encoding stripe rust resistance in multiple genetic populations from the cross between DHP and a susceptible hexaploid Australian cultivar, Avocet S (AvS). The most effective QTL in DHP was Yr18, explaining up to 53.08% of phenotypic variance in the F2:3 families. To identify additional genes, secondary mapping populations SP1 and SP2 were produced by crossing AvS with two resistant lines derived from F2:3 families lacking Yr18. An all-stage resistance gene, Yr.DHP-6AS, was identified via BSE-Seq analysis of SP1. Combined the recombinant plants from both SP1 and SP2, Yr.DHP-6AS was located between KP6A_1.66 and KP6A_8.18, corresponding to the same region as Yr81. In addition, secondary mapping populations SP3 and SP4 were developed by selfing a segregating line from F2:3 families lacking Yr18. A novel suppressor gene on chromosome 2BS was identified from DHP for effectively suppressing the resistance of Yr.DHP-6AS in the SP3 and SP4. As a result, the wheat lines carrying both Yr18 and Yr.DHP-6AS show higher level of stripe rust resistance than DHP, providing an effective and simple combination for developing new wheat cultivars with ASR and APR genes. Further, the newly developed KASP markers, KP6A_1.99 and KP6A_5.22, will facilitate the application of Yr.DHP-6AS in wheat breeding via marker-assisted selection.


Assuntos
Basidiomycota , Triticum , Humanos , Mapeamento Cromossômico , Triticum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Austrália , Doenças das Plantas/genética
9.
Theor Appl Genet ; 136(10): 213, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740730

RESUMO

KEY MESSAGE: A novel and stably expressed QTL QSNS.sicau-SSY-7A for spikelet number per spike in wheat without negative effects on thousand-kernel weight was identified and validated in different genetic backgrounds. Spikelet number per spike (SNS) is an important determinant of yield in wheat. In the present study, we combined bulked segregant analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array to rapidly identify genomic regions associated with SNS from a recombinant inbred line (RIL) population derived from a cross between the wheat lines S849-8 and SY95-71. A genetic map was constructed using Kompetitive Allele Specific PCR markers in the SNP-enriched region on the long arm of chromosome 7A. A major and stably expressed QTL, QSNS.sicau-SSY-7A, was detected in multiple environments. It was located in a 1.6 cM interval on chromosome arm 7AL flanked by the markers AX-109983514 and AX-109820548. This QTL explained 6.86-15.72% of the phenotypic variance, with LOD values ranging from 3.66 to 8.66. Several genes associated with plant growth and development were identified in the interval where QSNS.sicau-SSY-7A was located on the 'Chinese Spring' wheat and wild emmer reference genomes. Furthermore, the effects of QSNS.sicau-SSY-7A and WHEAT ORTHOLOG OFAPO1(WAPO1) on SNS were analyzed. Interestingly, QSNS.sicau-SSY-7A significantly increased SNS without negative effects on thousand-kernel weight, anthesis date and plant height, demonstrating its great potential for breeding aimed at improving grain yield. Taken together, these results indicate that QSNS.sicau-SSY-7A is a promising locus for yield improvement, and its linkage markers are helpful for fine mapping and molecular breeding.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Alelos , Embaralhamento de DNA , Grão Comestível
10.
Org Biomol Chem ; 21(13): 2748-2753, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36916729

RESUMO

A palladium-catalysed direct arene C-H fluoroalkoxylation of 4-aryl-pyrrolo[2,3-d]pyrimidine derivatives with fluorinated alcohols is described. Highly site-selective mono- or bis-fluoroalkoxylation can be achieved by tuning the reaction conditions, affording various fluoroalkoxylated pyrrolo[2,3-d]pyrimidine derivatives in moderate to good yields, which offer rational tailoring of their biological activity for their application in the field of pharmaceutical chemistry.

11.
Plant Dis ; 107(10): 3085-3095, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37079013

RESUMO

Identifying novel loci of yield-related traits and resistance to stripe rust (caused by Puccinia striiformis f. sp. tritici) in wheat will help in breeding wheat that can meet projected demands in diverse environmental and agricultural practices. We performed a genome-wide association study with 24,767 single nucleotide polymorphisms (SNPs) in 180 wheat accessions that originated in 16 Asian or European countries between latitudes 30°N and 45°N. We detected seven accessions with desirable yield-related traits and 42 accessions that showed stable, high degrees of stripe rust resistance in multienvironment field assessments. A marker-trait association analysis of yield-related traits detected 18 quantitative trait loci (QTLs) in at least two test environments and two QTLs related to stripe rust resistance in at least three test environments. Five of these QTLs were identified as potentially novel QTLs by comparing their physical locations with those of known QTLs in the Chinese Spring (CS) reference genome RefSeq v1.1 published by the International Wheat Genome Sequencing Consortium; two were for spike length, one was for grain number per spike, one was for spike number, and one was for stripe rust resistance at the adult plant stage. We also identified 14 candidate genes associated with the five novel QTLs. These QTLs and candidate genes will provide breeders with new germplasm and can be used to conduct marker-assisted selection in breeding wheat with improved yield and stripe rust resistance.


Assuntos
Basidiomycota , Estudo de Associação Genômica Ampla , Triticum/genética , Doenças das Plantas/genética , Resistência à Doença/genética , Melhoramento Vegetal , Basidiomycota/genética
12.
Theor Appl Genet ; 135(8): 2849-2860, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35804167

RESUMO

KEY MESSAGE: A co-located KL and TKW-related QTL with no negative effect on PH and AD was rapidly identified using BSA and wheat 660 K SNP array. Its effect was validated in a panel of 218 wheat accessions. Kernel length (KL) and thousand-kernel weight (TKW) of wheat (Triticum aestivum L.) contribute significantly to kernel yield. In the present study, a recombinant inbred line (RIL) population derived from the cross between the wheat line S849-8 with larger kernels and more spikelets per spike and the line SY95-71 was developed. Further, of both the bulked segregant analysis (BSA) and the wheat 660 K single nucleotide polymorphism (SNP) array were used to rapidly identify genomic regions for kernel-related traits from this RIL population. Kompetitive Allele Specific PCR markers were further developed in the SNP-enriched region on the 2D chromosome to construct a genetic map. Both QKL.sicau-SSY-2D for KL and QTKW.sicau-SSY-2D for TKW were identified at multiple environments on chromosome arm 2DL. These two QTLs explained 9.68-23.02% and 6.73-18.32% of the phenotypic variation, respectively. The effects of this co-located QTL were successfully verified in a natural population consisting of 218 Sichuan wheat accessions. Interestingly, the major QTL was significantly and positively correlated with spike length, but did not negatively affect spikelet number per spike (SNS), plant height, or anthesis date. These results indicated that it is possible to synchronously improve kernel weight and SNS by using this QTL. Additionally, several genes associated with kernel development and filling rate were predicted and sequenced in the QTL-containing physical intervals of reference genomes of 'Chinese spring' and Aegilops tauschii. Collectively, these results provide a QTL with great breeding potential and its linked markers which should be helpful for fine mapping and molecular breeding.


Assuntos
Melhoramento Vegetal , Triticum , Mapeamento Cromossômico/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética
13.
Plant Dis ; 106(4): 1209-1215, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34818919

RESUMO

Stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most destructive diseases of wheat. Identifying novel resistance genes applicable for developing disease-resistant cultivars is important for the sustainable control of wheat stripe rust. Chinese wheat landrace 'Xiaohemai' ('XHM') is an elite germplasm line with all-stage resistance (ASR) effective against predominant Chinese P. striiformis f. sp. tritici races. In this study, we performed a bulked segregant analysis coupled with exome capture sequencing (BSE-seq) to identify a candidate genomic region strongly associated with stripe rust resistance on chromosome 1AL in 173 F2:3 lines derived from the cross 'XHM' × 'Avocet S'. The gene, designated as YrXH-1AL, was validated by a conventional quantitative trait locus analysis using newly developed Kompetitive allele-specific PCR (KASP) markers, explaining up to 48.50% of the phenotypic variance. By testing a secondary mapping population comprising 144 lines from the same cross at the seedling stage with prevalent P. striiformis f. sp. tritici race CYR34, YrXH-1AL was identified as a single Mendelian factor in a 1.5-cM interval flanked by KASP markers KP1A_484.33 and KP1A_490.09. This region corresponded to a 5.76-Mb genomic interval on 'Chinese Spring' chromosome 1AL. Furthermore, two cosegregating KASP markers showed high polymorphisms among 130 Chinese wheat cultivars and could be used for marker-assisted selection. Because no other Yr genes for ASR that originated from common wheat have been detected on chromosome 1AL, YrXH-1AL is likely a novel gene that can be incorporated into modern breeding materials to develop wheat cultivars with enhanced stripe rust resistance.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , China , Mapeamento Cromossômico , Cromossomos , Resistência à Doença/genética , Exoma , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
14.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886927

RESUMO

Common wheat (Triticum aestivum L.) is an important food crop with a unique processing quality. The Q gene positively regulates the processing quality of wheat, but the underlying mechanism remains unclear. Here, a new Q allele (Qc5) responsible for compact spikes and good bread performance was identified. Compared with the Q allele widely distributed in modern common wheat cultivars, Qc5 had a missense mutation outside the miRNA172-binding site. This missense mutation led to a more compact messenger RNA (mRNA) secondary structure around the miRNA172-binding region, resulting in increased Qc5 expression during the spike development stage and a consequent increase in spike density. Furthermore, this missense mutation weakened the physical interaction between Qc5 and storage protein activator (SPA) in seeds and suppressed the expression of storage protein repressor (SPR). These changes increased the grain protein content and improved the bread-making quality of wheat. In conclusion, a missense mutation increases Q expression because of the resulting highly folded mRNA secondary structure around the miRNA172-binding site. Furthermore, this mutation improves the bread-making quality of wheat by repressing the expression of SPR and influencing the physical interaction between Q and SPA. These findings provide new insights into the miRNA172-directed regulation of gene expression, with implications for wheat breeding.


Assuntos
Pão , Triticum , Alelos , Pão/análise , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ressonância de Plasmônio de Superfície , Triticum/metabolismo
15.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955567

RESUMO

The granule-bound starch synthase I (GBSSI) encoded by the waxy gene is responsible for amylose synthesis in the endosperm of wheat grains. In the present study, a novel Wx-B1 null mutant line, M3-415, was identified from an ethyl methanesulfonate-mutagenized population of Chinese tetraploid wheat landrace Jianyangailanmai (LM47). The gene sequence indicated that the mutated Wx-B1 encoded a complete protein; this protein was incompatible with the protein profile obtained using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed the lack of Wx-B1 protein in the mutant line. The prediction of the protein structure showed an amino acid substitution (G470D) at the edge of the ADPG binding pocket, which might affect the binding of Wx-B1 to starch granules. Site-directed mutagenesis was further performed to artificially change the amino acid at the sequence position 469 from alanine (A) to threonine (T) (A469T) downstream of the mutated site in M3-415. Our results indicated that a single amino acid mutation in Wx-B1 reduces its activity by impairing its starch-binding capacity. The present study is the first to report the novel mechanism underlying Wx-1 deletion in wheat; moreover, it provided new insights into the inactivation of the waxy gene and revealed that fine regulation of wheat amylose content is possible by modifying the GBSSI activity.


Assuntos
Amilose , Triticum , Aminoácidos/metabolismo , Amilose/análise , Domínio Catalítico , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Tetraploidia , Triticum/metabolismo
16.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142679

RESUMO

Grain yield (GY) and grain protein content (GPC) are important traits for wheat breeding and production; however, they are usually negatively correlated. The Q gene is the most important domestication gene in cultivated wheat because it influences many traits, including GY and GPC. Allelic variations in the Q gene may positively affect both GY and GPC. Accordingly, we characterized two new Q alleles (Qs1 and Qc1-N8) obtained through ethyl methanesulfonate-induced mutagenesis. Compared with the wild-type Q allele, Qs1 contains a missense mutation in the sequence encoding the first AP2 domain, whereas Qc1-N8 has two missense mutations: one in the sequence encoding the second AP2 domain and the other in the microRNA172-binding site. The Qs1 allele did not significantly affect GPC or other processing quality parameters, but it adversely affected GY by decreasing the thousand kernel weight and grain number per spike. In contrast, Qc1-N8 positively affected GPC and GY by increasing the thousand kernel weight and grain number per spike. Thus, we generated novel germplasm relevant for wheat breeding. A specific molecular marker was developed to facilitate the use of the Qc1-N8 allele in breeding. Furthermore, our findings provide useful new information for enhancing cereal crops via non-transgenic approaches.


Assuntos
Proteínas de Grãos , Triticum , Alelos , Grão Comestível/química , Grão Comestível/genética , Metanossulfonato de Etila/metabolismo , Genes vif , Proteínas de Grãos/metabolismo , Mutação de Sentido Incorreto , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética , Triticum/metabolismo
17.
BMC Genomics ; 22(1): 34, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413106

RESUMO

BACKGROUND: Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant cultivars are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions. In addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under a controlled greenhouse environment. RESULTS: Seventeen accessions showed stable high-level resistance to stripe rust across all environments in the field tests. Four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers that covered the entire genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99-23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, whereas four and one QTL conferring seedling and adult-plant resistance, respectively, were mapped distantly from previously reported stripe rust resistance genes or QTL and thus may be novel resistance loci. CONCLUSIONS: Our results provided an integrated overview of stripe rust resistance resources in a wheat landrace diversity panel from the southern autumn-sown spring wheat zone of China. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.


Assuntos
Basidiomycota , Triticum , China , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Triticum/genética
18.
Theor Appl Genet ; 134(1): 261-278, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33026461

RESUMO

KEY MESSAGE: Eight major and stably expressed QTL for flag leaf morphology across eleven environments were identified and validated using newly developed KASP markers in seven biparental populations with different genetic backgrounds. Flag leaf morphology is a determinant trait influencing plant architecture and yield potential in wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population with a 55 K SNP-based constructed genetic map was used to map quantitative trait loci (QTL) for flag leaf length (FLL), width (FLW), area (FLA), angle (FLANG), opening angle (FLOA), and bend angle (FLBA) in eleven environments. Eight major QTL were detected in 11 environments with 5.73-54.38% of explained phenotypic variation. These QTL were successfully verified using the newly developed Kompetitive Allele Specific PCR (KASP) markers in six biparental populations with different genetic backgrounds. Among these 8 major QTL, two co-located intervals were identified. Significant interactions for both FLL- and FLW-related QTL were detected. Comparison analysis showed that QFll.sau-SY-2B and QFla.sau-SY-2B are likely new loci. Significant relationships between flag leaf- and yield-related traits were observed and discussed. Several genes associated with leaf development including the ortholog of maize ZmRAVL1, a B3-domain transcription factor involved in regulation of leaf angle, were predicted in physical intervals harboring these major QTL on reference genomes of bread wheat 'Chinese spring', T. turgidum, and Aegilops tauschii. Taken together, these results broaden our understanding on genetic basis of flag leaf morphology and provide clues for fine mapping and marker-assisted breeding wheat with optimized plant architecture for promising loci.


Assuntos
Patrimônio Genético , Folhas de Planta/anatomia & histologia , Locos de Características Quantitativas , Triticum/genética , Alelos , Mapeamento Cromossômico , Marcadores Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único
19.
Genome ; 64(9): 847-856, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33661713

RESUMO

Subgenome asymmetry (SA) has routinely been attributed to different responses between the subgenomes of a polyploid to various stimuli during evolution. Here, we compared subgenome differences in gene ratio and relative diversity between artificial and natural genotypes of several allopolyploid species. Surprisingly, consistent differences were not detected between these two types of polyploid genotypes, although they differ in times exposed to evolutionary selection. The estimated ratio of shared genes between a subgenome and its diploid donor was invariably higher for the artificial allopolyploid genotypes than those for the natural genotypes, which is expected as it is now well-known that many genes in a species are not shared among all individuals. As the exact diploid parent for a given subgenome is unknown, the estimated ratios of shared genes for the natural genotypes would also include difference among individual genotypes of the diploid donor species. Further, we detected the presence of SA in genotypes before the completion of the polyploidization events as well as in those which were not formed via polyploidization. These results indicate that SA may, to a large degree, reflect differences between its diploid donors or that changes occurred during polyploid evolution are defined by their donor genomes.


Assuntos
Diploide , Genoma de Planta , Poliploidia , Arabidopsis , Brassica , Gossypium , Triticum
20.
Org Biomol Chem ; 19(39): 8591-8596, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34568881

RESUMO

An efficient and highly regioselective Pd-catalyzed direct arene C(sp2)-H acyloxylation of pyrrolo[2,3-d]pyrimidine derivatives is reported. The key strategy involves the utilization of the unique reactivity of pyrrolo[2,3-d]pyrimidine and the employment of pyrrolo[2,3-d]pyrimidine as the directing group. A variety of monoacyloxylated pyrrolo[2,3-d]pyrimidine derivatives can be achieved by switching the solvents under mild conditions, and they can be further modified and exhibit various biological activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA