RESUMO
Interaction between tumor cells and immune cells determined highly heterogeneous microenvironments across patients, leading to substantial variation in clinical benefits from immunotherapy. Somatic gene mutations were found not only to elicit adaptive immunity but also to influence the composition of tumor immune microenvironment and various processes of antitumor immunity. However, due to an incomplete view of associations between gene mutations and immunophenotypes, how tumor cells shape the immune microenvironment and further determine the clinical benefit of immunotherapy is still unclear. To address this, we proposed a computational approach, inference of mutation effect on immunophenotype by integrated gene set enrichment analysis (MEIGSEA), for tracing back the genomic factor responsible for differences in immunophenotypes. MEIGSEA was demonstrated to accurately identify the previous confirmed immune-associated gene mutations, and systematic evaluation in simulation data further supported its performance. We used MEIGSEA to investigate the influence of driver gene mutations on the infiltration of 22 immune cell types across 19 cancers from The Cancer Genome Atlas. The top associated gene mutations with infiltration of CD8 T cells, such as CASP8, KRAS and EGFR, also showed extensive impact on other immune components; meanwhile, immune effector cells shared critical gene mutations that collaboratively contribute to shaping distinct tumor immune microenvironment. Furthermore, we highlighted the predictive capacity of gene mutations that are positively associated with CD8 T cells for the clinical benefit of immunotherapy. Taken together, we present a computational framework to help illustrate the potential of somatic gene mutations in shaping the tumor immune microenvironment.
Assuntos
Neoplasias , Microambiente Tumoral , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos , Humanos , Imunoterapia , Mutação , Neoplasias/genética , Microambiente Tumoral/genéticaRESUMO
Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using Phaffia rhodozyma. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in P. rhodozyma, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as crtYB, crtS, and crtI, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in P. rhodozyma and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.
RESUMO
Fungal infection has become a major threat to crop loss and affects food safety. The waste water from agar processing industries extraction has a number of active substances, which could be further transformed by microorganisms to synthesize antifungal active substances. In this study, Bacillus subtilis was used to ferment the waste water from agar processing industries extraction to analyze the antifungal activity of the fermentation broth on Alternaria alternata and Alternaria spp. Results showed that 25% of the fermentation broth was the most effective in inhibited A. alternata and Alternaria spp., with fungal inhibition rates of 99.9% and 96.1%, respectively, and a minimum inhibitory concentration (MIC) was 0.156 µg/mL. Metabolomic analysis showed that flavonoid polyphenols such as coniferyl aldehyde, glycycoumarin, glycitin, and procyanidin A1 may enhance the inhibitory activity against the two pathogenic fungal strains. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that polyphenols involved in the biosynthesis pathways of isoflavonoid and phenylpropanoid were upregulated after fermentation. The laser confocal microscopy analyses and cell conductivity showed that the cytoplasm of fungi treated with fermentation broth was destroyed. This study provides a research basis for the development of new natural antifungal agents and rational use of seaweed agar waste. KEY POINTS: ⢠Bacillus subtilis fermented waste water has antifungal activity ⢠Bacillus subtilis could transform active substances in waste water ⢠Waste water is a potential raw material for producing antifungal agents.
Assuntos
Antifúngicos , Bacillus subtilis , Bacillus subtilis/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Ágar , Águas Residuárias , Fermentação , AlternariaRESUMO
Poor thermostability reduces the industrial application value of κ-carrageenase. In this study, the PoPMuSiC algorithm combined with site-directed mutagenesis was applied to improve the thermostability of the alkaline κ-carrageenase from Pseudoalteromonas porphyrae. The mutant E154A with improved thermal stability was successfully obtained using this strategy after screening seven rationally designed mutants. Compared with the wild-type κ-carrageenase (WT), E154A improved the activity by 29.4% and the residual activity by 51.6% after treatment at 50 °C for 30 min. The melting temperature (Tm) values determined by circular dichroism were 66.4 °C and 64.6 °C for E154A and WT, respectively. Molecular dynamics simulation analysis of κ-carrageenase showed that the flexibility decreased within the finger regions (including F1, F2, F3, F5 and F6) and the flexibility improved in the catalytic pocket area of the mutant E154A. The catalytic tunnel dynamic simulation analysis revealed that E154A led to enlarged catalytic tunnel volume and increased rigidity of the enzyme-substrate complex. The increasing rigidity within the finger regions and more flexible catalytic pocket of P. porphyrae κ-carrageenase might be a significant factor for improvement of the thermostability of the mutant κ-carrageenase E154A. The proposed rational design strategy could be applied to improve the enzyme kinetic stability of other industrial enzymes. Moreover, the hydrolysates of κ-carrageenan digested by the mutant E154A demonstrated increased scavenging activities against hydroxyl (OH) radicals and 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radicals compared with the undigested κ-carrageenan.
Assuntos
Domínio Catalítico , Estabilidade Enzimática , Glicosídeo Hidrolases , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Pseudoalteromonas , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Pseudoalteromonas/enzimologia , Pseudoalteromonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cinética , Temperatura , Dicroísmo Circular , Conformação Proteica , Carragenina/metabolismoRESUMO
Astaxanthin is a valuable carotenoid and is used as antioxidant and health care. Phaffia rhodozyma is a potential strain for the biosynthesis of astaxanthin. The unclear metabolic characteristics of P. rhodozyma at different metabolic stages hinder astaxanthin's promotion. This study is conducted to investigate metabolite changes based on quadrupole time-of-flight mass spectrometry metabolomics method. The results showed that the downregulation of purine, pyrimidine, amino acid synthesis, and glycolytic pathways contributed to astaxanthin biosynthesis. Meanwhile, the upregulation of lipid metabolites contributed to astaxanthin accumulation. Therefore, the regulation strategies were proposed based on this. The addition of sodium orthovanadate inhibited the amino acid pathway to increase astaxanthin concentration by 19.2%. And the addition of melatonin promoted lipid metabolism to increase the astaxanthin concentration by 30.3%. It further confirmed that inhibition of amino acid metabolism and promotion of lipid metabolism were beneficial for astaxanthin biosynthesis of P. rhodozyma. It is helpful in understanding metabolic pathways affecting astaxanthin of P. rhodozyma and provides regulatory strategies for metabolism.
Assuntos
Basidiomycota , Carotenoides , Xantofilas/metabolismo , Basidiomycota/química , MetabolômicaRESUMO
Although cancer immunotherapy is a compelling approach against cancer, its effectiveness is hindered by the challenge of generating a robust and durable immune response against metastatic cancer cells. Nanovaccines, specifically engineered to transport cancer antigens and immune-stimulating agents to the lymph nodes, hold promise in overcoming these limitations and eliciting a potent and sustained immune response against metastatic cancer cells. This manuscript provides an in-depth exploration of the lymphatic system's background, emphasizing its role in immune surveillance and tumor metastasis. Furthermore, it delves into the design principles of nanovaccines and their unique capability to target lymph node metastasis. The primary objective of this review is to provide a comprehensive overview of the current advancements in nanovaccine design for targeting lymph node metastasis, while also discussing their potential to enhance cancer immunotherapy. By summarizing the state-of-the-art in nanovaccine development, this review aims to shed light on the promising prospects of harnessing nanotechnology to potentiate cancer immunotherapy and ultimately improve patient outcomes.
Assuntos
Linfonodos , Neoplasias , Vacinas Anticâncer , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Nanotecnologia , Sistemas de Liberação de Medicamentos , Humanos , Animais , Terapia CombinadaRESUMO
BACKGROUND: Targeting EBV-proteins with mRNA vaccines is a promising way to treat EBV-related tumors like nasopharyngeal carcinoma (NPC). We assume that it may sensitize tumors to immune checkpoint inhibitors. RESULTS: We developed an LMP2-mRNA lipid nanoparticle (C2@mLMP2) that can be delivered to tumor-draining lymph nodes. C2@mLMP2 exhibited high transfection efficiency and lysosomal escape ability and induced an increased proportion of CD8 + central memory T cells and CD8 + effective memory T cells in the spleen of the mice model. A strong synergistic anti-tumor effect of C2@mLMP2 in combination with αPD-1 was observed in tumor-bearing mice. The mechanism was identified to be associated with a reverse of CD8 + T cell exhaustion in the tumor microenvironment. The pathological analysis further proved the safety of the vaccine and the combined therapy. CONCLUSIONS: This is the first study proving the synergistic effect of the EBV-mRNA vaccine and PD-1 inhibitors for EBV-related tumors. This study provides theoretical evidence for further clinical trials that may expand the application scenario and efficacy of immunotherapy in NPC.
Assuntos
Herpesvirus Humano 4 , Neoplasias Nasofaríngeas , Animais , Camundongos , Herpesvirus Humano 4/genética , Exaustão das Células T , Inibidores de Checkpoint Imunológico/farmacologia , Carcinoma Nasofaríngeo/tratamento farmacológico , RNA Mensageiro/genética , Neoplasias Nasofaríngeas/tratamento farmacológico , Microambiente TumoralRESUMO
Astaxanthin has high utilization value in functional food because of its strong antioxidant capacity. However, the astaxanthin content of Phaffia rhodozyma is relatively low. Adaptive laboratory evolution is an excellent method to obtain high-yield strains. TiO2 is a good inducer of oxidative stress. In this study, different concentrations of TiO2 were used to domesticate P. rhodozyma, and at a concentration of 1000 mg/L of TiO2 for 105 days, the optimal strain JMU-ALE105 for astaxanthin production was obtained. After fermentation, the astaxanthin content reached 6.50 mg/g, which was 41.61% higher than that of the original strain. The ALE105 strain was fermented by batch and fed-batch, and the astaxanthin content reached 6.81 mg/g. Transcriptomics analysis showed that the astaxanthin synthesis pathway, and fatty acid, pyruvate, and nitrogen metabolism pathway of the ALE105 strain were significantly upregulated. Based on the nitrogen metabolism pathway, the nitrogen source was adjusted by ammonium sulphate fed-batch fermentation, which increased the astaxanthin content, reaching 8.36 mg/g. This study provides a technical basis and theoretical research for promoting industrialization of astaxanthin production of P. rhodozyma. ONE-SENTENCE SUMMARY: A high-yield astaxanthin strain (ALE105) was obtained through TiO2 domestication, and its metabolic mechanism was analysed by transcriptomics, which combined with nitrogen source regulation to further improve astaxanthin yield.
Assuntos
Xantofilas , Evolução Molecular Direcionada , Perfilação da Expressão Gênica , Basidiomycota/química , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Biomassa , Glucose/análise , Carotenoides/análise , Fermentação , Técnicas de Cultura Celular por Lotes , Nitrogênio/metabolismo , Xantofilas/química , Xantofilas/metabolismoRESUMO
BACKGROUND: Gastroduodenal artery (GDA) stump erosion hemorrhage is a fatal complication after pancreaticoduodenectomy. This study aimed to determine whether GDA stump wrapping with the teres hepatis ligament during pancreaticoduodenectomy decreased the incidence of postpancreatectomy hemorrhage (PPH). METHODS: We reviewed 307 patients who had undergone pancreaticoduodenectomy between March 2019 and June 2022. The patients were divided into two groups according to application of GDA stump wrapping with the teres hepatis ligament: GDA wrapping group (165 patients) and no-wrapping group (142 patients). The perioperative data were compared between the groups. RESULTS: The clinical characteristics were balanced between the two groups. Grades B and C PPH and GDA-stump-related hemorrhage were significantly reduced in the GDA wrapping group compared with the no-wrapping group (PPH B/C, 13.4% vs 6.1%, P = 0.029; GDA hemorrhage, 5.6% vs 0.6%, P = 0.014). No difference was observed in the incidence of clinically relevant postoperative pancreatic fistula, biliary leak, intra-abdominal abscess, delayed gastric emptying, 90-day mortality, and postoperative hospital stay between the two groups. CONCLUSION: Wrapping GDA stump with the teres hepatis ligament reduced the incidence of GDA-stump-related PPH. Therefore, the wrapping technique is a simple and effective strategy to prevent PPH. Prospective studies are needed to confirm the benefit of this procedure.
Assuntos
Pancreaticoduodenectomia , Hemorragia Pós-Operatória , Humanos , Artéria Hepática/cirurgia , Ligamentos/cirurgia , Fístula Pancreática/etiologia , Pancreaticoduodenectomia/efeitos adversos , Pancreaticoduodenectomia/métodos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/cirurgia , Hemorragia Pós-Operatória/etiologia , Hemorragia Pós-Operatória/prevenção & controle , Estudos RetrospectivosRESUMO
The diverse biological activities of alginate oligosaccharides attracted extensive exploration of alginate lyases with various substrate specificity and enzymatic properties. In this study, an alginate lyase from Microbulbifer sp. ALW1, namely AlgL7, was phylogenetically classified into the polysaccharide lyase family 7 (PL7). The conserved amino acid residues Tyr606 and His499 in AlgL7 were predicted to act as the general acid/base catalysts. The enzyme was enzymatically characterized after heterologous expression and purification in E. coli. AlgL7 displayed optimal activity at 40 °C and pH 7.0. It had good stability at temperature below 35 °C and within a pH range of 5.0-10.0. AlgL7 exhibited good stability against the reducing reagent ß-ME and the surfactants of Tween-20 and Triton X-100. The degradation profiles of alginate indicated AlgL7 was a bifunctional endolytic alginate lyase generating alginate oligosaccharides with the degrees of polymerization 2-4. The degradation products of sodium alginate exhibited stronger antioxidant activities than the untreated polysaccharide. In addition, AlgL7 could directly digest Laminaria japonica to produce alginate oligosaccharides. These characteristics of AlgL7 offer a great potential of its application in high-value utilization of brown algae resources.
Assuntos
Alteromonadaceae , Laminaria , Alginatos/metabolismo , Aminoácidos , Antioxidantes , Proteínas de Bactérias/química , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Laminaria/metabolismo , Octoxinol , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/química , Polissorbatos , Especificidade por Substrato , Tensoativos , TemperaturaRESUMO
Alzheimer´s disease is a global neurodegenerative health concern. To prevent the disease, the simultaneous inhibition of acetylcholinesterase and oxidative stress is an efficient approach. In this study, the inhibition effect of all-trans astaxanthin mainly from marine organisms on acetylcholinesterase and oxidative stress was evaluated by a chemical-based method in vitro and cell assay model. The results show that all-trans astaxanthin was a reversible competitive inhibitor and exhibited a strong inhibition effect with half inhibitory concentration (IC50 value) of 8.64 µmol/L. Furthermore, all-trans astaxanthin inhibited oxidative stress through reducing malondialdehyde content and increasing the activity of superoxide dismutase as well as catalase. All-trans astaxanthin could induce the changes of the secondary structure to reduce acetylcholinesterase activity. Molecular-docking analysis reveals that all-trans astaxanthin prevented substrate from binding to acetylcholinesterase by occupying the space of the active pocket to cause the inhibition. Our finding suggests that all-trans astaxanthin might be a nutraceutical supplement for Alzheimer´s disease prevention.
Assuntos
Acetilcolinesterase , Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Estresse Oxidativo , Xantofilas/farmacologiaRESUMO
Chondroitinase plays an important role in structural and functional studies of chondroitin sulfate (CS). In this study, a new member of chondroitinase B of PL6 family, namely ChSase B6, was cloned from marine bacterium Microbulbifer sp. ALW1 and subjected to enzymatic and structural characterization. The recombinant ChSase B6 showed optimum activity at 40 °C and pH 8.0, with enzyme kinetic parameters of Km and Vmax against chondroitin sulfate B (CSB) to be 7.85 µg/mL and 1.21 U/mg, respectively. ChSase B6 demonstrated thermostability under 60 °C for 2 h with about 50% residual activity and good pH stability under 4.0-10.0 for 1 h with above 60% residual activity. In addition, ChSase B6 displayed excellent stability against the surfactants including Tween-20, Tween-80, Trion X-100, and CTAB. The degradation products of ChSase B6-treated CSB exhibited improved antioxidant ability as a hydroxyl radical scavenger. Structural analysis and site-directed mutagenesis suggested that the conserved residues Lys248 and Arg269 were important for the activity of ChSase B6. Characterization, structure, and molecular dynamics simulation of ChSase B6 provided a guide for further tailoring for its industrial application for chondroitin sulfate bioresource development.
Assuntos
Alteromonadaceae , Tensoativos , Sulfatos de Condroitina , Condroitinases e Condroitina Liases , Concentração de Íons de Hidrogênio , Polissorbatos , TemperaturaRESUMO
BACKGROUND: Triple-negative breast cancer (TNBC) is a clinically aggressive disease with abundant variants that cause homologous recombination repair deficiency (HRD). Whether TNBC patients with HRD are sensitive to anthracycline, cyclophosphamide and taxane (ACT), and whether the combination of HRD and tumour immunity can improve the recognition of ACT responders are still unknown. METHODS: Data from 83 TNBC patients in The Cancer Genome Atlas (TCGA) was used as a discovery cohort to analyse the association between HRD and ACT chemotherapy benefits. The combined effects of HRD and immune activation on ACT chemotherapy were explored at both the genome and the transcriptome levels. Independent cohorts from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO) were adopted to validate our findings. RESULTS: HRD was associated with a longer ACT chemotherapy failure-free interval (FFI) with a hazard ratio of 0.16 (P = 0.004) and improved patient prognosis (P = 0.0063). By analysing both HRD status and ACT response, we identified patients with a distinct TNBC subtype (ACT-S&HR-P) that showed higher tumour lymphocyte infiltration, IFN-γ activity and NK cell levels. Patients with ACT-S&HR-P had significantly elevated immune inhibitor levels and presented immune activation associated with the increased activities of both innate immune cells and adaptive immune cells, which suggested treatment with immune checkpoint blockade as an option for this subtype. Our analysis revealed that the combination of HRD and immune activation enhanced the efficiency of identifying responders to ACT chemotherapy (AUC = 0.91, P = 1.06e-04) and synergistically contributed to the clinical benefits of TNBC patients. A transcriptional HRD signature of ACT response-related prognostic factors was identified and independently validated to be significantly associated with improved survival in the GEO cohort (P = 0.0038) and the METABRIC dataset (P < 0.0001). CONCLUSIONS: These findings highlight that HR deficiency prolongs FFI and predicts intensified responses in TNBC patients by combining HRD and immune activation, which provides a molecular basis for identifying ACT responders.
Assuntos
Neoplasias de Mama Triplo Negativas , Antraciclinas , Ciclofosfamida , Humanos , Reparo de DNA por Recombinação , Taxoides , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genéticaRESUMO
Catalytic efficiency and thermostability are the two most important characteristics of enzymes. However, it is always tough to improve both catalytic efficiency and thermostability of enzymes simultaneously. In the present study, a computational strategy with double-screening steps was proposed to simultaneously improve both catalysis efficiency and thermostability of enzymes; and a fungal α-l-rhamnosidase was used to validate the strategy. As the result, by molecular docking and sequence alignment analysis within the binding pocket, seven mutant candidates were predicted with better catalytic efficiency. By energy variety analysis, A355N, S356Y, and D525N among the seven mutant candidates were predicted with better thermostability. The expression and characterization results showed the mutant D525N had significant improvements in both enzyme activity and thermostability. Molecular dynamics simulations indicated that the mutations located within the 5 Å range of the catalytic domain, which could improve root mean squared deviation, electrostatic, Van der Waal interaction, and polar salvation values, and formed water bridge between the substrate and the enzyme. The study indicated that the computational strategy based on the binding energy, conservation degree and mutation energy analyses was effective to develop enzymes with better catalysis and thermostability, providing practical approach for developing industrial enzymes.
Assuntos
Aspergillus niger , Proteínas Fúngicas , Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Aspergillus niger/enzimologia , Aspergillus niger/genética , Catálise , Estabilidade Enzimática/ética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genéticaRESUMO
We found that ascophyllan significantly inhibited the fibrillation of human insulin and was the most effective among the sulfated polysaccharides tested. Gel-filtration analysis suggested that ascophyllan was capable of forming a complex with insulin through a weak interaction. Secondary structure transition from native α-helix to ß-sheet predominant structure of insulin under the fibrillation conditions was suppressed in the presence of ascophyllan. Interestingly, ascophyllan attenuated insulin fibril-induced hemolysis of human erythrocytes. Moreover, ascophyllan attenuated insulin amyloid-induced cytotoxicity on rat pheochromocytoma PC12 cells and reduced the level of intracellular reactive oxygen species. This is the first report indicating that a sulfated polysaccharide, ascophyllan, can suppress the insulin amyloid fibril formation and inhibit the fibril-induced detrimental bioactivities.
Assuntos
PolissacarídeosRESUMO
In this study, we found that a sulfated polysaccharide isolated from the brown alga Ascophyllum nodosum, ascophyllan, showed suppressive effects on stimulated RAW264.7 cells. Ascophyllan significantly inhibited expression of inducible nitric oxide synthase mRNA and excessive production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in a dose-dependent manner without affecting the viability of RAW264.7 cells. Ascophyllan also reduced the elevated level of intracellular reactive oxygen species (ROS) in LPS-stimulated RAW264.7 cells. Furthermore, preincubation with ascophyllan resulted in concentration-dependent decrease in ROS production in phorbol 12-myristate-13-acetate-stimulated RAW264.7 cells. Our results suggest that ascophyllan can exhibit anti-inflammatory effects on stimulated macrophages mainly through the attenuation of NO and ROS productions.
Assuntos
Ascophyllum/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico/biossíntese , Polissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfatos/metabolismo , Animais , Camundongos , Células RAW 264.7RESUMO
OBJECTIVE: Platinum-based chemotherapy remains the first-line treatment for ovarian carcinoma by inducing DNA damage. The therapeutic impact of clonal and subclonal somatic mutations in DNA damage repair (DDR) pathways remains unexplored. METHODS: We performed an integrated analysis to infer the clonality of somatic deleterious mutations in 385 ovarian carcinomas treated with platinum-based chemotherapy. The Kaplan-Meier method was performed for visualization and the differences between survival curves were calculated by log-rank test. Proportional hazards models were used to estimate relative hazards for platinum-free interval (PFI), progression-free survival (PFS) and overall survival (OS). RESULTS: We found that somatic deleterious mutations in DDR pathways exhibited widespread clonal heterogeneity, and that patients with DDR clonal mutations exhibited a "hypermutator phenotype". Clonal somatic mutations in homologous recombination repair (HRR) pathway were significantly associated with better OS (HR = 0.19 (95% CI, 0.06-0.59), P = 0.0044) and PFS (HR = 0.20 (95% CI, 0.08-0.49), P = 0.0005) than HRR wild-type, while HRR subclonal mutations were not associated with prognosis. Moreover, HRR clonal mutations were associated with significantly higher chemotherapy sensitive rate (P = 0.0027) and longer PFI (HR = 0.20 (95% CI, 0.08-0.49), P = 0.0005) than HRR wild-type, while HRR subclonal mutations were not. We validated our findings using an independent cohort of 93 ovarian cancer patients that received platinum-based chemotherapy. CONCLUSIONS: HRR clonal mutations, but not subclonal mutations, were associated with improved survival, chemotherapy response, and genome instability compared with HRR wild-type.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Reparo do DNA , Feminino , Instabilidade Genômica , Recombinação Homóloga , Humanos , Estimativa de Kaplan-Meier , Compostos Organoplatínicos/administração & dosagem , Neoplasias Ovarianas/cirurgia , Valor Preditivo dos Testes , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Taxa de Sobrevida , Resultado do TratamentoRESUMO
An effective two-dimensional liquid chromatography method has been established for the analysis of all-trans-astaxanthin and its geometric isomers from Phaffia rhodozyma employing a C18 column at the first dimension and a C30 column in the second dimension, connected by a 10-port valve using the photo-diode array detector. The regression equation of astaxanthin calibration curve was established, and the precision and accuracy values were found to be in the range of 0.32-1.14% and 98.21-106.13%, respectively. By using two-dimensional liquid chromatography, it was found that day light, ultrasonic treatment, and heat treatment have significant influence on the content of all-trans-astaxanthin in the extract from P. rhodozyma due to the transformation of all-trans-astaxanthin to cis-astaxanthin. The day light and ultrasonic treatments more likely transform all-trans-astaxanthin to 9-cis-astaxanthin, and the thermal treatment transforms all-trans-astaxanthin to 13-cis-astaxanthin. These results indicate that the two-dimensional liquid chromatography method can facilitate monitoring astaxanthin isomerization in the raw extract from P. rhodozyma. In addition, the study will provide a general reference for monitoring other medicals and bioactive chemicals with geometric isomers.
Assuntos
Basidiomycota/química , Extratos Vegetais/análise , Cromatografia Líquida de Alta Pressão , Estereoisomerismo , Xantofilas/análiseRESUMO
A new alginate lyase gene of algl17 was cloned from an alginate-degrading marine bacterium Microbulbifer sp. ALW1. The gene contained 2220 bp and encoded a 739-amino acid protein classified into the PL-17 family. The recombinant alginate lyase AlgL17 was overexpressed and purified from Escherichia coli BL21 (DE3) with a molecular mass of 84.9â¯kDa. This enzyme showed activities towards sodium alginate, polyM and alginate oligosaccharide, but very low activity towards polyG. These results indicate that AlgL17 is a polyM-specific oligoalginate lyase. When sodium alginate was used as a substrate, the optimum reaction temperature and pH for the enzyme were 35⯰C and pH 8.0, respectively. Recombinant AlgL17 was stable at 25⯰C, but not stable at 30⯰C and 35⯰C. It showed good stability over a pH range of 5.0-8.0. The enzyme activity was increased to 1.7 times by adding NaCl to a final concentration of 0.7â¯M. The ability of the recombinant AlgL17 producing 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH) from sodium alginate and polyM block indicates that AlgL17 is an exo-type alginate lyase.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Gammaproteobacteria/enzimologia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Gammaproteobacteria/genética , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Polissacarídeo-Liases/metabolismo , Especificidade por Substrato , TemperaturaRESUMO
In this study, a sulfated polysaccharide (BFP) was isolated from the edible red alga Bangia fusco-purpurea. Gel-filtration and thin layer chromatographically analyses suggested that BFP was a homogenous polysaccharide. The chemical structural analysis revealed that BFP mainly consisted of galactose together with a small amount of uronic acid, mannose, and glucose. Its molecular mass was estimated to be 133.18 kDa by high-performance liquid chromatography (HPLC) analysis. BFP inhibited α-amylase and α-glucosidase in a concentration-dependent manner. The IC50 values of BFP against α-amylase and α-glucosidase were estimated to be 1.26 ± 0.11 mg/mL and 1.34 ± 0.07 mg/mL, respectively. Kinetic analyses suggested that BFP showed competitive and non-competitive inhibition against α-amylase and α-glucosidase, respectively. Circular dichroism spectral and fluorescence spectral analyses suggested that BFP affects the conformational structures of these enzymes, which may lead to the inhibition of the enzymatic activities. Abbreviations: Ara: D-arabinose; AnGal: anhydro-L-galactose residues; CD spectroscopy: Circular Dichroism spectroscopy; DNS: dinitrosalicylic acid; FT-IR: fourier transform infrared spectra; Fuc: L-fucose; Gal: D-galactose; Glc: D-glucose; GlcA: D-Glucuronic acid; HPLC: high performance liquid chromatography; Man: D-mannose; pNPG: p-nitrophenyl-α-D-glucoside; TFA: trifluoroacetic acid; TLC: thin-layer chromatography; PMP: 1-phenyl-3-methyl-5-pyrazolone; Xyl: D-xylose.