Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(6): 1645-9, 2016 Jun.
Artigo em Zh | MEDLINE | ID: mdl-30052364

RESUMO

Grapes vaporize volatiles in specific compositions and concentrations during deterioration processes. Our previous study demonstrated that it is possible to analyze grapes spoilage stages by using the infrared spectra of their volatiles. However, only the spectral characteristics of alcohol, ethyl acetate and carbon dioxide were observed in the experiment because of the low concentration of the volatiles. In this paper, the sensitivity of the spectrometry system was enhanced by increasing the optical-path with multi-reflecting mirrors. We used the new spectrometry system to study the details of the infrared spectra of the volatiles from grapes during spoilage, and observed the spectral characteristics of several kinds of ethanol, esters, aldehyde and ethylene. The concentrations of some components in the volatiles changes with storage time, which can be a biomarker to represent the spoilage stages of grapes. Chemometrics were used to analyze the spectral bands of ethanol and esters, demonstrating there are obvious differences between fresh and decayed grapes. Furthermore, we developed a simplified E-nose system comprised by sensor array, based on the results of spectral analysis. The classification and discrimination of grape spoilage were tested with E-nose. This was a further study of the previous publication and had given a more precise observation of the infrared spectral characteristics of the volatiles from decayed grapes. This study provided a basis for developing real-time monitoring techniques of fruits deterioration.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(10): 2667-72, 2014 Oct.
Artigo em Zh | MEDLINE | ID: mdl-25739205

RESUMO

In the present work, fresh and spoiled wine samples from three wines produced by different companies were studied u- sing Fourier transform infrared (FTIR) spectroscopy. We analyzed the physicochemical property change in the process of spoil- age, and then, gave out the attribution of some main FTIR absorption peaks. A novel determination method was explored based on the comparisons of some absorbance ratios at different wavebands although the absorbance ratios in this method were relative. Through the compare of the wine spectra before and after spoiled, the authors found that they were informative at the bands of 3,020~2,790, 1,760~1,620 and 1,550~800 cm(-1). In order to find the relation between these informative spectral bands and the wine deterioration and achieve the discriminant analysis, chemometrics methods were introduced. Principal compounds analysis (PCA) and soft independent modeling of class analogy (SIMCA) were used for classifying different-quality wines. And partial least squares discriminant analysis (PLS-DA) was applied to identify spoiled wines and good wines. Results showed that FTIR technique combined with chemometrics methods could effectively distinguish spoiled wines from fresh samples. The effect of classification at the wave band of 1 550-800 cm(-1) was the best. The recognition rate of SIMCA and PLSDA were respectively 94% and 100%. This study demonstrates that Fourier transform infrared spectroscopy is an effective tool for monitoring red wine's spoilage and provides theoretical support for developing early-warning equipments.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Vinho/análise , Análise Discriminante , Análise dos Mínimos Quadrados
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(2): 359-62, 2013 Feb.
Artigo em Zh | MEDLINE | ID: mdl-23697111

RESUMO

The content of sugar is an important quality index for pears. However, the traditional sugar measurement methods are time-consuming and destructive. In the present study, the authors measured the sugar content of pears using visible and near infrared diffuse reflection spectroscopy. The pretreatment methods of multiplicative scatter correction (MSC), baseline correction, standard normal variate (SNV) transformation, and moving average algorithms were used on the original absorbance spectrum. Results indicate that the absorbance spectra after pretreatment are better than the original absorbance spectra for prediction. Partial least squares (PLS) regression was also used on the original absorbance spectrum and the absorbance spectrum after moving average and baseline correction. It follows that the forecast accuracy of the absorbance spectra after moving average is higher than that of the original absorbance spectra. The models gave good predictions of the sugar content of pears, with corresponding r values of 0.990 8, and standard errors of predictions of 0.019 0.


Assuntos
Algoritmos , Carboidratos/análise , Frutas/química , Pyrus/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise dos Mínimos Quadrados , Análise de Regressão
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(3): 785-9, 2013 Mar.
Artigo em Zh | MEDLINE | ID: mdl-23705454

RESUMO

The real-time measurement of potassium in farmland soil has great importance. A method to determine the potassium content in farmland soil based on laser-induced breakdown spectroscopy (LIBS) was studied using a LIBS equipment consisting of a 1,064 nm laser generator and a high resolution spectrometer. The farmland soil samples with potassium content in the range of 8.74-34.56 g.kg-1 were analyzed. The 766.49 nm was chosen as the analysis line, by comparing the potassium atom characteristic lines of 404.40, 404.72, 766.49 and 769.90 nm. The errors of characteristic line strength caused by the laser stability and random noise was analyzed. The silicon, which is nearly constant in farmland soil, was chosen as the standard element, and a calibration model between the ratio of potassium to silicon (K/Si) and the potassium content was established. The linear fitting degree of the calibration curve was 0.935, and the relative standard deviation of the calibration model for prediction set samples was 9.26%.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Lasers , Potássio/análise , Solo/química , Análise Espectral/métodos , Análise Espectral/instrumentação
5.
Front Chem ; 10: 967158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118321

RESUMO

A fast quantitative analysis method of soil potassium based on direct-focused laser ablation-laser induced breakdown spectroscopy (direct-focused LA-LIBS) was proposed and tested. A high single-pulse energy laser (200 mJ/pulse) beam was focused on the aerosols near the focus of the 10 kHz fiber laser to generate plasma spectra, and the analytical capability of the direct-focused LA-LIBS system was compared with traditional LIBS system using a high single-pulse energy laser (SP-LIBS). The result showed that for moist soil samples the data stability of the direct-focused LA-LIBS method was significantly improved and the R2 factor of the calibration curve improved from 0.64 to 0.93, the limit of detection improved from 159.2 µg/g to 140.9 µg/g. Three random soil samples from different areas of Beijing suburbs were analyzed by the direct-focused LA-LIBS method, and the results were consistent with AAS. The direct-focused LA-LIBS method proposed is different from the traditional double-pulse technology and laser ablation-assisted technology because it not only does not need carrier gas, but also can overcome the matrix differences better, especially the influence of moisture, which provides a new idea for the rapid detection of nutrient elements in field soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA