Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Idioma
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3797-3804, 2020 Aug.
Artigo em Zh | MEDLINE | ID: mdl-32893573

RESUMO

Mountain-agarwood plays an important role in ethnic medicine in China for its pharmaceutical value. Modern pharmacological researches demonstrated that mountain-agarwood was effective for its anti-myocardial ischemia, antibacterial, anti-inflammatory, antitumor and analgesic effects. Mountain-agarwood derives from the peeled roots, stems or twigs of Syringa pinnatifolia which belongs to Syringa genus. It often depends on the purple substance and fragrance to estimate the formation of mountain-agarwood. However, the mechanism of mountain-agarwood formation has not been reported. To observe the microcosmic change in the process during the formation of mountain-agarwood, this study described the microscopic and histochemical characteristics of mountain-agarwood formation through histochemical staining. Our results showed that a significant difference of the distribution of tyloses existed during mountain-agarwood formation. It was observed that inchoate mountain-agarwood had more starch granules and viable cells than mountain-agarwood formed with high level or low level. The amount of polysaccharide and degree of lignification were increased during the mountain-agarwood formation. The results indicated that the mountain-agarwood, which meets the quality requirements for pharmaceutical use, contained the following characteristics: a large amount of purple tyloses in heartwood; yellow-brown tyloses distributing in heartwood and sapwood which were less in the latter; lignification with high level; a few viable cells; lots of polysaccharide and few starch granules in xylem rays cell. This study is aimed to reveal the change of histochemical characteristics during mountain-agarwood formation, and lay the foundation for exploring the mechanism of mountain-agarwood formation.


Assuntos
Isquemia Miocárdica , Syringa , Thymelaeaceae , China , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA