Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(4): 043201, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763419

RESUMO

The Floquet engineering opens the way to create new topological states without counterparts in static systems. Here, we report the experimental realization and characterization of new anomalous topological states with high-precision Floquet engineering for ultracold atoms trapped in a shaking optical Raman lattice. The Floquet band topology is manipulated by tuning the driving-induced band crossings referred to as band inversion surfaces (BISs), whose configurations fully characterize the topology of the underlying states. We uncover various exotic anomalous topological states by measuring the configurations of BISs that correspond to the bulk Floquet topology. In particular, we identify an unprecedented anomalous Floquet valley-Hall state that possesses anomalous helical-like edge modes protected by valleys and a chiral state with high Chern number.

2.
Phys Rev Lett ; 125(26): 260603, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449755

RESUMO

The famous Kibble-Zurek mechanism offers us a significant clue to study quantum phase transitions out of equilibrium. Here, we investigate an intriguing phenomenon of a spin-orbit coupled Bose-Einstein condensate by quenching the Raman coupling strength from a high-symmetry phase (nonmagnetic phase) to a low-symmetry phase (magnetic phase). When crossing the critical point, the fluctuation of momentum distribution leads to delayed bifurcation structures. Simultaneously, the domain information emerges in momentum space. Moreover, the universal scalings of spatiotemporal dynamics are extracted from the fluctuations and domains, which manifests homogeneous and inhomogeneous Kibble-Zurek power laws at different timescales. Our work demonstrates a paradigmatic study on the inhomogeneous Kibble-Zurek mechanism.

3.
Phys Rev Lett ; 123(19): 190603, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765219

RESUMO

Quantum dynamics induced in quenching a d-dimensional topological phase across a phase transition may exhibit a nontrivial dynamical topological pattern on the (d-1)D momentum subspace, called band inversion surfaces (BISs), which have a one-to-one correspondence to the bulk topology of the postquench phase. Here we report the experimental observation of such dynamical bulk-surface correspondence through measuring the topological charges in a 2D quantum anomalous Hall model realized in an optical Raman lattice. The system can be quenched with respect to every spin axis by suddenly varying the two-photon detuning or phases of the Raman couplings, in which the topological charges and BISs are measured dynamically by the time-averaged spin textures. We observe that the total charges in the region enclosed by BISs define a dynamical topological invariant, which equals the Chern number of the postquench band and also characterizes the topological pattern of a dynamical field emerging on the BISs, rendering the dynamical bulk-surface correspondence. This study opens a new avenue to explore topological phases dynamically.

4.
Rev Sci Instrum ; 90(5): 054708, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31153239

RESUMO

A ultralow noise magnetic field is essential for many branches of scientific research. Examples include experiments conducted on ultracold atoms, quantum simulations, and precision measurements. In ultracold atom experiments specifically, a bias magnetic field will often serve as a quantization axis and be applied for Zeeman splitting. As atomic states are usually sensitive to magnetic fields, a magnetic field characterized by ultralow noise as well as high stability is typically required for experimentation. For this study, a bias magnetic field is successfully stabilized at 14.5 G, with the root mean square value of the noise reduced to 18.5 µG (1.28 ppm) by placing µ-metal magnetic shields together with a dynamical feedback circuit. Long-time instability is also regulated consistently below 7 µG. The level of noise exhibited in the bias magnetic field is further confirmed by evaluating the coherence time of a Bose-Einstein condensate characterized by Rabi oscillation. It is concluded that this approach can be applied to other physical systems as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA