Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2301780120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399420

RESUMO

Nearly half of the elements in the periodic table are extracted, refined, or plated using electrodeposition in high-temperature melts. However, operando observations and tuning of the electrodeposition process during realistic electrolysis operations are extremely difficult due to severe reaction conditions and complicated electrolytic cell, which makes the improvement of the process very blind and inefficient. Here, we developed a multipurpose operando high-temperature electrochemical instrument that combines operando Raman microspectroscopy analysis, optical microscopy imaging, and a tunable magnetic field. Subsequently, the electrodeposition of Ti-which is a typical polyvalent metal and generally shows a very complex electrode process-was used to verify the stability of the instrument. The complex multistep cathodic process of Ti in the molten salt at 823 K was systematically analyzed by a multidimensional operando analysis strategy involving multiple experimental studies, theoretical calculations, etc. The regulatory effect and its corresponding scale-span mechanism of the magnetic field on the electrodeposition process of Ti were also elucidated, which would be inaccessible with existing experimental techniques and is significant for the real-time and rational optimization of the process. Overall, this work established a powerful and universal methodology for in-depth analysis of high-temperature electrochemistry.

2.
Small ; 20(1): e2303836, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670221

RESUMO

The battery performance declines significantly in severely cold areas, especially discharge capacity and cycle life, which is the most significant pain point for new energy consumers. To address this issue and improve the low-temperature characteristic of aluminum-ion batteries, in this work, polydopamine-derived N-doped carbon nanospheres are utilized to modify the most promising graphite material. More active sites are introduced into graphite, more ion transport channels are provided, and improved ionic conductivity is achieved in a low-temperature environment. Due to the synergistic effect of the three factors, the ion diffusion resistance is significantly reduced and the diffusion coefficient of aluminum complex ions in the active material become larger at low temperatures. Therefore, the battery delivers an improved capacity retention rate from 23% to 60% at -20 °C and excellent ultra-long cycling stability over 5500 cycles at -10 °C. This provides a novel strategy for constructing low-temperature aluminum-ion batteries with high energy density, which is conducive to promoting the practicality of aluminum-ion batteries.

3.
Small ; 20(22): e2309823, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38109127

RESUMO

Electrocatalysts with low Pt loading mass to achieve high current density (≥1 A cm-2) for hydrogen evolution reaction (HER) are still extremely challenging due to the limited intrinsic activity and weak stability of catalytic sites. The modulation of the electronic microenvironment of the support-Pt structure is crucial to enhance the intrinsic activity and stability of catalytic sites. Herein, an innovative titanium oxycarbide (TiVCO) solid solution with Ti vacancies (TiV) is proposed as support to anchor sub-nanoscale Pt atomic clusters (Pt ACs) and a stable "TiV-Pt ACs" structure is carefully designed. The electronic microenvironment of "TiV-Pt ACs" is indirectly optimized by an unsaturated C/O site near TiV. Thanks to this, novel "TiV-Pt ACs" structure (Pt@TiVCO) with low Pt loading mass (2.44 wt.%) exhibits excellent HER activity in acidic solution and the mass activity is more than ten times that of commercial 20% Pt/C at the overpotentials of 50 and 100 mV. Particularly, Pt@TiVCO shows amazing stability at high and fluctuating current density of 1-2 A cm-2 for 120 h. This work provides a novel and promising method to develop stable and low-loading Pt-based catalysts adapting to high current density.

4.
Angew Chem Int Ed Engl ; 63(12): e202317203, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38286752

RESUMO

The two-dimensional (2D) MXenes with sufficient interlayer spacing are promising cathode materials for aluminum-ion batteries (AIBs), yet the electrostatic repulsion effect between the surface negative charges and the active anions (AlCl4 - ) hinders the intercalation of AlCl4 - and is usually ignored. Here, we propose a charge regulation strategy for MXene cathodes to overcome this challenge. By doping N and Co, the zeta potential is gradually transformed from negative (Ti3 C2 Tx ) to near-neutral (Ti3 CNTx ), and finally positive (Ti3 CNTx @Co). Therefore, the electrostatic repulsion force can be greatly weakened between Ti3 CNTx and AlCl4 - , or even formed a strong electrostatic attraction between Ti3 CNTx @Co and AlCl4 - , which can not only accommodate more AlCl4 - ions in the Ti3 CNTx @Co interlayers to increase the capacity, but also solve the stacking and expansion problems. As a result, the optimized Al-MXene battery exhibits an ultrahigh capacity of up to 240 mAh g-1 (2-4 times the capacity of graphite cathode, 60-120 mAh g-1 ) and a potential ultrahigh energy density (432 Wh kg-1 , 2-4 times the value of graphite, 110-220 Wh kg-1 ) based on the mass of cathode materials, comparable to LiFePO4 -based lithium-ion batteries (350-450 Wh kg-1 , based on the mass of LiFePO4 ).

5.
Angew Chem Int Ed Engl ; : e202410110, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972839

RESUMO

Nonaqueous organic aluminum batteries are considered as promising high-safety energy storage devices due to stable ionic liquid electrolytes and Al metals. However, the stability and capacity of organic positive electrodes are limited by their inherent high solubility and low active organic molecules. To address such issues, here porphyrin compounds with rigid molecular structures present stable and reversible capability in electrochemically storing AlCl2+. Comparison between the porphyrin molecules with electron-donating groups (TPP-EDG) and with electron-withdrawing groups (TPP-EWG) suggests that EDG is responsible for increasing both HOMO and LUMO energy levels, resulting in decreased redox potentials. On the other hand, EWG is associated with decreasing both HOMO and LUMO energy levels, leading to promoted redox potentials. EDG and EWG play critical roles in regulating electron density of porphyrin π bond and electrochemical energy storage kinetics behavior. The competitive mechanism between electrochemical redox reaction and de/adsorption processes suggests that TPP-OCH3 delivers the highest specific capacity ~171.8 mAh g-1, approaching a record in the organic Al batteries.

6.
Langmuir ; 39(50): 18654-18662, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38060435

RESUMO

The consistency of lithium-ion battery performance is the key factor affecting the safety and cycle life of battery packs. Surface engineering of electrodes in production processes plays an important role in improving the consistency of battery performance. In this study, the drying process in the electrode manufacturing process is studied as the effect on surface engineering of the electrode materials, with consideration on impacting the battery performance. Specifically, the solid content of the slurry and drying temperature are considered to be the two factors that affect conductive agent dispersion uniformity in the porous electrodes. To achieve surface engineering on the dispersion uniformity of the conductive agent, the optimal processing parameters can be obtained by adjusting the temperature and solid content of the slurry. The mechanism of dispersion uniformity of the conductive agent is mainly related to the polyvinylidene fluoride grid structure. In the manufacturing of lithium-ion batteries, the electrode coated with 66% solid slurry and dried at 90-100 °C presents stable energy storage performance, which is beneficial to maintain the stable performance of the battery pack in the application.

7.
Chem Rev ; 121(8): 4903-4961, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33728899

RESUMO

For significantly increasing the energy densities to satisfy the growing demands, new battery materials and electrochemical chemistry beyond conventional rocking-chair based Li-ion batteries should be developed urgently. Rechargeable aluminum batteries (RABs) with the features of low cost, high safety, easy fabrication, environmental friendliness, and long cycling life have gained increasing attention. Although there are pronounced advantages of utilizing earth-abundant Al metals as negative electrodes for high energy density, such RAB technologies are still in the preliminary stage and considerable efforts will be made to further promote the fundamental and practical issues. For providing a full scope in this review, we summarize the development history of Al batteries and analyze the thermodynamics and electrode kinetics of nonaqueous RABs. The progresses on the cutting-edge of the nonaqueous RABs as well as the advanced characterizations and simulation technologies for understanding the mechanism are discussed. Furthermore, major challenges of the critical battery components and the corresponding feasible strategies toward addressing these issues are proposed, aiming to guide for promoting electrochemical performance (high voltage, high capacity, large rate capability, and long cycling life) and safety of RABs. Finally, the perspectives for the possible future efforts in this field are analyzed to thrust the progresses of the state-of-the-art RABs, with expectation of bridging the gap between laboratory exploration and practical applications.

8.
J Environ Manage ; 326(Pt A): 116744, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375435

RESUMO

In this study, a novel process for the recovery of Ni from Ni-bearing electroplating sludge (ES) is proposed, which involves the carbothermic reduction stage and smelting stage. In the reduction stage, the CaSO4, Fe2O3, and NiO in the ES were reduced by carbon at 1000 °C, and the Ni3S2 and Fe4Ni5S8(Ni-rich phases) were generated. After that, the reduced ES was mixed with SiO2 and smelted at 1500 °C. During the smelting stage, Ni3S2 and Fe4Ni5S8 were melted to form liquid Ni-Fe-S matte and separated from the molten slag by gravity. Finally, 58.5%Ni-13.8%Fe-27.7%S (in weight) matte and vitrified slag were obtained. The recovery ratio of Ni (97.2%) was much higher than that of Fe (14.7%). Besides, the Ni/Fe mass ratio of the ES was 0.7, while the ratio of the prepared matte was about 4.2. Therefore, the selective recovery of Ni was achieved. The obtained Ni matte can be used as the raw material for pure Ni or Ni-bearing chemicals.


Assuntos
Galvanoplastia , Esgotos , Dióxido de Silício
9.
Angew Chem Int Ed Engl ; 62(22): e202301985, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36965175

RESUMO

Owing to high-efficiency and scalable advantages of electrolysis in molten salts, electrochemical conversion of carbonaceous resources into graphitic products is a sustainable route for achieving high value-added carbon. To understand the complicated kinetics of converting amorphous carbon (e.g. carbonized lignin-biochar) into highly graphitic carbon, herein this study reports the key processing parameters (addition of Ni, temperature and time) and multi-scale approach of nickel-boosted electrochemical graphitization-catalysis processes in molten calcium chloride. Upon both experiments and modellings, multi-scale analysis that ranges from nanoscale atomic reaction to macroscale cell reveal the multi-field evolution in the electrolysis cell, mechanism of electrochemical reaction kinetics as well as pathway of nickel-boosted graphitization and tubulization. The results of as-achieved controllable processing regions and multi-scale approaches provide a rational strategy of manipulating electrochemical graphitization processes and utilizing the converted biomass resources for high value-added use.

10.
Small ; 18(27): e2201362, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35620966

RESUMO

Rechargeable aluminum batteries (RABs) have been paid considerable attention in the field of electrochemical energy storage batteries due to their advantages of low cost, good safety, high capacity, long cycle life, and good wide-temperature performance. Unlike traditional single-ion rocking chair batteries, more than two kinds of active ions are electrochemically participated in the reaction processes on the positive and negative electrodes for nonaqueous RABs, so the reaction kinetics and battery electrochemistries need to be given more comprehensive assessments. In addition, although nonaqueous RABs have made significant breakthroughs in recent years, they are still facing great challenges in insufficient reaction kinetics, low energy density, and serious capacity attenuation. Here, the research progresses of positive materials are comprehensively summarized, including carbonaceous materials, oxides, elemental S/Se/Te and chalcogenides, as well as organic materials. Later, different modification strategies are discussed to improve the reaction kinetics and battery performance, including crystal structure control, morphology and architecture regulation, as well as flexible design. Finally, in view of the current research challenges faced by nonaqueous RABs, the future development trend is proposed. More importantly, it is expected to gain key insights into the development of high-performance positive materials for nonaqueous RABs to meet practical energy storage requirements.

11.
Angew Chem Int Ed Engl ; 61(32): e202206482, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35686474

RESUMO

Recently, the ultra-high temperature electrochemistry (UTE, about >1000 °C) has emerged, which represents an exploration to extend the temperature limit of human technology in electrochemical engineering. UTE has far-reaching impact on revolutionary low-carbon metal extraction and the in situ production of oxygen for deep-space exploration. It is hence of urgency to systematically summarize the development of UTE. In this Review, the basic concepts of UTE and the physicochemical properties of molten oxides are analyzed. The principles in the design of inert anodes for the oxygen evolution reaction in molten oxides are discussed, which forms a solid basis for the in situ production of oxygen from simulated lunar regolith by UTE. Furthermore, liquid metal cathodes for revolutionary titanium extraction and ironmaking/steelmaking are highlighted. With emphasis on the key challenges and perspectives, the Review can provide valuable inspiration for the rapid advancement of UTE.


Assuntos
Metais , Óxidos , Eletroquímica , Eletrodos , Humanos , Óxidos/química , Oxigênio/química , Temperatura
12.
Angew Chem Int Ed Engl ; 61(34): e202205394, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35726355

RESUMO

Characterizing microscale single particles directly is requested for dissecting the performance-limiting factors at the electrode scale. In this work, we build a single-particle electrochemical setup and develop a physics-based model for extracting the solid-phase diffusion coefficient (Ds ) and exchange current density (i0 ) from electrochemical impedance measurements. We find that the carbon coating on the LiNi1/3 Mn1/3 Co1/3 O2 surface enhances i0 . In addition, Ds and i0 decay irreversibly by ≈25 % and ≈10 %, respectively, when the cutoff charge voltage increases from 4.3 V to 4.4 V. Moreover, we correlate intrinsic parameters of single particles with the performance of porous electrodes. Porous electrodes assembled with active particles with higher i0 values deliver a greater capacity and faster capacity fade. The methods developed in this combined experimental and theoretical work can be useful in correlating the single-particle scale and porous-electrode scale for other similar systems.

13.
Angew Chem Int Ed Engl ; 61(24): e202202696, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35384209

RESUMO

Aluminum-sulfur (Al-S) batteries of ultrahigh energy-to-price ratios are a promising energy storage technology, while they suffer from a large voltage gap and short lifespan. Herein, we propose an electrocatalyst-boosting quasi-solid-state Al-S battery, which involves a sulfur-anchored cobalt/nitrogen co-doped graphene (S@CoNG) positive electrode and an ionic-liquid-impregnated metal-organic framework (IL@MOF) electrolyte. The Co-N4 sites in CoNG continuously catalyze the breaking of Al-Cl and S-S bonds and accelerate the sulfur conversion, endowing the Al-S battery with a shortened voltage gap of 0.43 V and a high discharge voltage plateau of 0.9 V. In the quasi-solid-state IL@MOF electrolytes, the shuttle effect of polysulfides has been inhibited, which stabilizes the reversible sulfur reaction, enabling the Al-S battery to deliver 820 mAh g-1 specific capacity and 78 % capacity retention after 300 cycles. This finding offers novel insights to design Al-S batteries for stable energy storage.

14.
Phys Chem Chem Phys ; 23(17): 10326-10334, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33881077

RESUMO

With the urgent need to explore high-performance electrochemical energy storage systems, rechargeable Al-ion batteries (AIBs) have attracted attention from researchers and engineers due to their traits, such as abundance and safety. Among all the issues waiting to be solved, the development of a reliable positive electrode material with high specific capacity is an absolute priority for the commercialization of AIBs. Sulfur has a natural advantage when used as the active material, and its theoretical specific capacity is as high as 1675 mA h g-1. MOFs and MOF-derived materials have been proved to be promising hosts for Li-S batteries. Herein, we report a novel Al-S battery system employing MOF (ZIF-67) and MOF-derived materials as sulfur host materials. After being chemically combined with sulfur, the composite still maintains its unique well-defined polyhedron morphology. The voltage hysteresis phenomenon is effectively alleviated with the aid of the host matrix. DFT calculations confirm that ZIF-67 and carbonized ZIF-67-700 polyhedrons can act as an anchor point towards sulfur (S8) and polysulfides (Al2S3, Al2S6, Al2S12, and Al2S18), preventing the detrimental dissolution and shuttle effect. These findings can enlighten future researchers regarding Al-S batteries and broaden the application of MOFs in the field of electrochemical energy storage systems.

15.
Phys Chem Chem Phys ; 21(13): 7021-7028, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30869709

RESUMO

Developing a suitable cathode material for rechargeable aluminum-ion batteries (AIBs) is currently recognized as a key challenge in pushing AIBs from lab-level to industrial application. Herein, detailed density functional theory (DFT) calculations are carried out to investigate the potential application of black and blue phosphorus monolayers as cathode materials for AIBs. It can be found that AlCl4- ions can strongly bind with both phosphorene allotropes, along with significant charge transfer. For black P, a semiconducting-to-metallic transition is realized in the (AlCl4)8P16 compound. Likewise, the band gap of blue P is reduced from 1.971 eV (pristine blue P) to 0.817 eV. Moreover, both phosphorene allotropes show excellent structural integrity with increased AlCl4- concentration, while delivering competitive theoretical capacities of 432.29 and 384.25 mA h g-1 for black ((AlCl4)8P16) and blue phosphorene ((AlCl4)8P18), respectively. Kinetic calculations present modest energy barriers of 0.19 and 0.39 eV for AlCl4- ions migrating on the surface of black and blue P, and an anisotropic migration nature is also found in both phosphorene allotropes. Based on our results, black and blue phosphorene show great potential as cathode materials for AIBs with robust ion-adsorption, insignificant deformation, self-improved conductivity, and fast kinetic performance.

16.
Faraday Discuss ; 190: 421-32, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27212433

RESUMO

KF is employed as a source of fluoride ions added to the melt to disclose the influence of fluoride on the disproportionation reactions of titanium ions, 3Ti(2+) = 2Ti(3+) + Ti, and 4Ti(3+) = 3Ti(4+) + Ti. The results reveal that the equilibrium transferred to the right direction for the first reaction and the apparent equilibrium constant increased sharply, mainly because of the formation of coordination compounds: TiFi(3-i). The accurate values of the equilibrium constants referring to the formation reactions of Ti(3+) + iF(-) = TiFi(3-i) (i = 1-6) in NaCl-KCl melt at 1023 K were evaluated with a best fit least squares method. It is also revealed that the stable states of the coordination compounds are TiF(2+), TiF2(+), TiF4(-) and TiF6(3-). Moreover, the Gibbs free energies for complex formation were estimated. Ti(2+) was undetectable when the concentration of fluoride ion was high enough. The equilibrium constant for the formation reaction, Ti(4-) + 6F(-) = TiF6(2-), was evaluated. The equilibrium constant, Kc2, for the disproportionation reaction 4Ti(3+) = 3Ti(4+) + Ti, in chloride melt was determined as 0.015.

17.
Faraday Discuss ; 190: 259-68, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27213189

RESUMO

The electrochemical deposition of carbon materials has been performed in LiCl-Li2CO3 melts using a Pt anode and a nickel cathode. Cyclic voltammetry and constant voltage electrolysis are conducted to investigate the electrode reactions, and the results prove that solid carbon is the only product from the cathodic reduction. Short-term electrolysis at 750 °C for 3, 10 and 20 s has been applied to study the formation and growth of the varied carbon microstructures. All of the results demonstrate that the morphologies of the deposited carbon are significantly affected by the cathode substrates, which may show different catalyzing effects on carbon nucleation. Two primary morphologies, quasi-spherical and nanofiber structures are observed at the nickel plate cathodes during the electrolysis and the formation and growth of carbon nanofibers are easily enhanced by using a high cell voltage. However, only a quasi-spherical structure is found on the molybdenum cathode substrate.

18.
Phys Chem Chem Phys ; 18(4): 3204-13, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26744041

RESUMO

The paper reports a facile and cost effective method for fabricating sodium molybdenum sulfide nanoparticles through using MoS2 sheets as the precursor by sodium-modification. The electrochemical performances of sodium molybdenum sulfide nanoparticles are studied as anode materials for sodium-ion batteries. The galvanostatic charge-discharge measurements have been performed in a voltage range of 0.01-2.6 V vs. Na(+)/Na under different current densities, using the as-prepared sodium molybdenum sulfide nanoparticles as a working electrode. Typically, the initial discharge and charge capacities of sodium molybdenum sulfide nanoparticles are 475 and 380 mA h g(-1), respectively, at a current density of 20 mA g(-1). The sodium molybdenum sulfide nanoparticles exhibit high capacity with a reversible discharge capacity of about 190 mA h g(-1) after 100 cycles. It should be emphasized that the discharge reaction consists of two steps which correspond to voltage plateaus of 0.93 V and 0.85 V vs. Na(+)/Na in the first discharge curve of the Na/MoS2 battery, respectively. But there is only one apparent voltage plateau in the Na/Na-Mo-S battery, and it reduces to below 0.5 V vs. Na(+)/Na, which can enhance the power density. All of the findings demonstrate that sodium molybdenum sulfide nanoparticles have steady cycling performance and environmental and cost friendliness as next generation secondary batteries.

19.
Phys Chem Chem Phys ; 17(6): 4551-7, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25582353

RESUMO

Due to their low cost, high abundance and eco-friendly features, Na-ion batteries are becoming alternative choices for rechargeable batteries, especially in large scale applications. Generally, the well-crystallized materials have many advantages over amorphous materials, such as long cycle life, high rate performance and other electrochemical properties. However, the amorphous FePO4 we report here exhibits outstanding cycling stability and rate performance which are derived from its amorphous nature and wafer-like porous morphology. A comparative study of amorphous and crystalline FePO4 has been carried out as cathode materials for Na-ion batteries. The present study not only reports a synthetic method which is facile, inexpensive, and scalable for mass production, but it also motivates further exploration of other amorphous materials for Na-ion batteries.

20.
Phys Chem Chem Phys ; 16(17): 8086-91, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24652551

RESUMO

A single phase titanium oxycarbonitride TiC0.25O0.25N0.5 was prepared by sintering a homogenous mixture of TiO, TiC and TiN with a molar ratio of 1 : 1 : 2 by spark plasma sintering (SPS) at 1873 K. TiO0.25C0.25N0.5 was then used as the consumable anode for the USTB titanium process and the anode dissolution process was investigated by electrochemical methods. The results showed that TiO0.25C0.25N0.5 was electrochemically dissolved into Ti(2+) in the NaCl-KCl melts as determined by square-wave voltammetry analysis and simultaneously CO as well as N2 evolved in the anode as detected by mass spectroscopy. And TiO0.25C0.25N0.5 has exhibited a similar electron transfer resistance as TiC0.5O0.5 and TiN as measured by electrochemical impedance spectroscopy (EIS) analysis. By galvanostatic electrolysis, the cathode products were proved to be pure titanium powders. The results indicated that TiO0.25C0.25N0.5 is a suitable consumable anode for the USTB titanium process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA