Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(3): 1531-1540, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38118063

RESUMO

Investigating soil organic matter's (SOM) microscale assembly and functionality is challenging due to its complexity. This study constructs comparatively realistic SOM models, including diverse components such as Leonardite humic acid (LHA), lipids, peptides, carbohydrates, and lignin, to unveil their spontaneous self-assembly behavior at the mesoscopic scale through microsecond coarse-grained molecular dynamics simulations. We discovered an ordered SOM aggregation creating a layered phase from its hydrophobic core to the aqueous phase, resulting in an increasing O/C ratio and declining structural amphiphilicity. Notably, the amphiphilic lipids formed a bilayer membrane, partnering with lignin to constitute SOM's hydrophobic core. LHA, despite forming a layer, was embedded within this structure. The formation of such complex architectures was driven by nonbonded interactions between components. Our analysis revealed component-dependent diffusion effects within the SOM system. Lipids, peptides, and lignin showed inhibitory effects on self-diffusion, while carbohydrates facilitated diffusion. This study offers novel insights into the dynamic behavior and assembly of SOM components, introducing an effective approach for studying dynamic SOM mechanisms in aquatic environments.


Assuntos
Simulação de Dinâmica Molecular , Solo , Solo/química , Água/química , Lignina , Substâncias Húmicas , Peptídeos/química , Lipídeos , Carboidratos
2.
Water Res ; 250: 121043, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154340

RESUMO

The investigation of pollutant behavior at water interfaces is critical to understand pollution in aquatic systems. Computational methods allow us to overcome the limitations of experimental analysis, delivering valuable insights into the chemical mechanisms and structural characteristics of pollutant behavior at interfaces across a range of scales, from microscopic to mesoscopic. Quantum mechanics, all-atom molecular dynamics simulations, coarse-grained molecular dynamics simulations, and dissipative particle dynamics simulations represent diverse molecular interaction calculation methods that can effectively model pollutant behavior at environmental interfaces from atomic to mesoscopic scales. These methods provide a rich variety of information on pollutant interactions with water surfaces. This review synthesizes the advancements in applying typical computational methods to the formation, adsorption, binding, and catalytic conversion of pollutants at water interfaces. By drawing on recent advancements, we critically examine the current challenges and offer our perspective on future directions. This review seeks to advance our understanding of computational techniques for elucidating pollutant behavior at water interfaces, a critical aspect of water research.


Assuntos
Poluentes Ambientais , Água , Água/química , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA