Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Photochem Photobiol Sci ; 22(7): 1527-1541, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36922485

RESUMO

A novel dual functional and visual rhodamine ethylenediamine bis(triazolyl silsesquioxane) (RBS) chemosensor was successfully synthesized using "click" chemistry. The results have unambiguously demonstrated that RBS can act in fluorescent and colorimetric sensing of Cu2+ and Zn2+ by their respective coordination with triazole structures and, more importantly, it has also been found that triazole-amide of RBS could turn on chelation-enhanced fluorescence (CHEF) of Cu2+. Remarkably, the addition of Cu2+ triggered an enhanced fluorescent emission by 63.3-fold (ϕF = 0.41), while Zn2+ enhanced it 48.3-fold (ϕF = 0.29) relative to the original RBS (ϕF = 0.006) in acetonitrile (MeCN) solvent. The fluorescent limit of detection for Cu2+ and Zn2+ is similar and fall within 3.0 nM, while under colorimetric sensing the responses were 2.14 × 10-8 and 4.0 × 10-8 mol L-1, respectively. Moreover, the effective sensing profile of RBS and extended applications of RBS-Cu2+ and RBS-Zn2+ for fingerprinting detection and imaging were observed with adequate sensitivity, stability and legibility under the dual visual responses.

2.
Phys Chem Chem Phys ; 25(23): 16148-16156, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279011

RESUMO

The interaction dynamics between flurbiprofen (FBP) and tryptophan (Trp) has been studied in covalently linked dyads and within human serum albumin (HSA) by means of fluorescence and ultrafast transient absorption spectroscopy. The dyads have proven to be excellent models to investigate photoinduced processes such as energy and/or electron transfer that may occur in proteins and other biological media. Since the relative spatial arrangement of the interacting units may affect the yield and kinetics of the photoinduced processes, two spacers consisting of amino and carboxylic groups separated by a cyclic or a long linear hydrocarbon chain (1 and 2, respectively) have been used to link the (S)- or (R)-FBP with the (S)-Trp moieties. The main feature observed in the dyads was a strong intramolecular quenching of the fluorescence, which was more important for the (S,S)- than for the (R,S)- diastereomer in dyads 1, whereas the reverse was true for dyads 2. This was consistent with the results obtained by simple molecular modelling (PM3). The observed stereodifferentiation in (S,S)-1 and (R,S)-1 arises from the deactivation of 1Trp*, while in (S,S)-2 and (R,S)-2 it is associated with 1FBP*. The mechanistic nature of 1FBP* quenching is ascribed to energy transfer, while for 1Trp* it is attributed to electron transfer and/or exciplex formation. These results are consistent with those obtained by ultrafast transient absorption spectroscopy, where 1FBP* was detected as a band with a maximum at ca. 425 nm and a shoulder at ∼375 nm, whereas Trp did not give rise to any noticeable transient. Interestingly, similar photoprocesses were observed in the dyads and in the supramolecular FBP@HSA complexes. Overall, these results may aid to gain a deeper understanding of the photoinduced processes occurring in protein-bound drugs, which may shed light on the mechanistic pathways involved in photobiological damage.


Assuntos
Flurbiprofeno , Humanos , Flurbiprofeno/química , Flurbiprofeno/metabolismo , Triptofano/química , Albumina Sérica Humana , Modelos Moleculares
3.
Phys Chem Chem Phys ; 25(17): 12041-12049, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37082985

RESUMO

The design and development of new triplet-triplet annihilation upconversion (TTA-UC) systems combining triplet sensitizers with acceptor compounds have attracted considerable interest. In this vein, sensitizers made from purely organic dyes rather than transition-metal complexes appear to be more convenient from an environmental point of view. BODIPYs are a very well-known class of dyes with applications in a widespread range of scientific areas. Owing to the versatility of BODIPYs, we present herein a new asymmetric BODIPY with excellent photophysical properties to be used as an appropriate sensitizer in a bimolecular TTA-UC system. Detailed spectroscopic measurements demonstrated the ability of this new design to sensitize TTA-UC by combination with a suitable acceptor such as 2,5,8,11-tetra-tert-butylperylene (TBPe), allowing a successful conversion of green to blue light. The singlet-excited TBPe so obtained is capable of activating aryl chlorides reductively which initiated the functionalization of N-methylpyrrole (Meerwein-type arylation) and formation of both substituted triarylethylenes (Mizoroki-Heck reaction) and heteroarene phosphonates (photo-Arbuzov reaction). Product yields reveal that our TTA-UC system behaved as a highly efficient photocatalytic entity.

4.
Photochem Photobiol Sci ; 21(7): 1175-1184, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35303293

RESUMO

In this work, the feasibility of triplet fusion upconversion (TFU, also named triplet-triplet annihilation upconversion) technology for the functionalization (arylation) of furans and thiophenes has been successfully proven. Activation of aryl halides by TFU leads to generation of aryl radical intermediates; trapping of the latter by the corresponding heteroarenes, which act as nucleophiles, affords the final coupling products. Advantages of this photoredox catalytic method include the use of very mild conditions (visible light, standard conditions), employment of commercially available reactants and low-loading metal-free photocatalysts, absence of any sacrificial agent (additive) in the medium and short irradiation times. The involvement of the high energetic delayed fluorescence in the reaction mechanism has been evidenced by quenching studies, whereas the two-photon nature of this photoredox arylation of furans and thiophenes has been manifested by the dependence on the energy source power. Finally, the scaling-up conditions have been gratifyingly afforded by a continuous-flow device.


Assuntos
Furanos , Luz , Catálise , Fótons , Tiofenos
5.
Beilstein J Org Chem ; 15: 2612-2622, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807196

RESUMO

Four new dyes that derive from borylated arylisoquinolines were prepared, containing a third aryl residue (naphthyl, 4-methoxynaphthyl, pyrenyl or anthryl) that is linked via an additional stereogenic axis. The triaryl cores were synthesized by Suzuki couplings and then transformed into boronic acid esters by employing an Ir(I)-catalyzed reaction. The chromophores show dual emission behavior, where the long-wavelength emission band can reach maxima close to 600 nm in polar solvents. The fluorescence quantum yields of the dyes are generally in the range of 0.2-0.4, reaching in some cases values as high as 0.5-0.6. Laser-flash photolysis provided evidence for the existence of excited triplet states. The dyes form fluoroboronate complexes with fluoride anions, leading to the observation of the quenching of the long-wavelength emission band and ratiometric response by the build-up of a hypsochromically shifted emission signal.

6.
J Org Chem ; 83(21): 13019-13029, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30274513

RESUMO

Latent electrophiles are nowadays very attractive chemical entities for drug discovery, as they are unreactive unless activated upon binding with the specific target. In this work, the utility of 4-trifluoromethyl phenols as precursors of latent electrophiles, quinone methides (QM), for lysine-targeting is demonstrated. These Michael acceptors were photogenerated for specific covalent modification of lysine residues using human serum albumin (HSA) as a model target. The reactive QM-type intermediates I or II, generated upon irradiation of 4-trifluoromethyl-1-naphthol (1)@HSA or 4-(4-trifluorometylphenyl)phenol (2)@HSA complexes, exhibited chemoselective reactivity toward lysine residues leading to amide adducts, which was confirmed by proteomic analysis. For ligand 1, the covalent modification of residues Lys106 and Lys414 (located in subdomains IA and IIIA, respectively) was observed, whereas for ligand 2, the modification of Lys195 (in subdomain IIA) took place. Docking and molecular dynamics simulation studies provided an insight into the molecular basis of the selectivity of 1 and 2 for these HSA subdomains and the covalent modification mechanism. These studies open the opportunity of performing protein silencing by generating reactive ligands under very mild conditions (irradiation) for specific covalent modification of hidden lysine residues.

7.
Chemistry ; 23(56): 13986-13994, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28791745

RESUMO

The covalent binding of ß-lactams to proteins upon photochemical activation has been demonstrated by using an integrated approach that combines photochemical, proteomic and computational studies, selecting human serum albumin (HSA) as a target protein and ezetimibe (1) as a probe. The results have revealed a novel protein haptenation pathway for this family of drugs that is an alternative to the known nucleophilic ring opening of ß-lactams by the free amino group of lysine residues. Thus, photochemical ring splitting of the ß-lactam ring, following a formal retro-Staudinger reaction, gives a highly reactive ketene intermediate that is trapped by the neighbouring lysine residues, leading to an amide adduct. For the investigated 1/HSA system, covalent modification of residues Lys414 and Lys525, which are located in sub-domains IIIA and IIIB, respectively, occurs. The observed photobinding may constitute the key step in the sequence of events leading to photoallergy. Docking and molecular dynamics simulation studies provide an insight into the molecular basis of the selectivity of 1 for these HSA sub-domains and the covalent modification mechanism. Computational studies also reveal positive cooperative binding of sub-domain IIIB that explains the experimentally observed modification of Lys414, which is located in a barely accessible pocket (sub-domain IIIA).


Assuntos
Albumina Sérica/metabolismo , beta-Lactamas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Ezetimiba/química , Ezetimiba/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteômica , Albumina Sérica/química , Espectrometria de Massas em Tandem , Raios Ultravioleta , beta-Lactamas/química
8.
Chimia (Aarau) ; 71(1-2): 18-25, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28259191

RESUMO

The interaction dynamics between the drug flurbiprofen (FBP) and human serum albumin (HSA) has been investigated by time-resolved fluorescence spectroscopy, combining femtosecond fluorescence upconversion and picosecond time-correlated single photon counting. In order to obtain additional information on the drug/ protein interaction, several covalently linked model dyads, composed of FBP and tryptophan or tyrosine, were also studied. For all systems, the main feature was a remarkable dynamic FBP fluorescence quenching, more prominent in the dyads than in the protein complex. All systems also displayed a clear stereoselectivity depending on the (S)- or (R)-form of FBP, that was strongly influenced by the conformational arrangement of the investigated chromophores.


Assuntos
Aminoácidos/química , Fluorescência , Flurbiprofeno/química , Albumina Sérica/química , Humanos , Substâncias Macromoleculares/química , Modelos Moleculares , Estrutura Molecular , Fatores de Tempo
9.
Toxicol Appl Pharmacol ; 313: 131-137, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984131

RESUMO

Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore to the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity.


Assuntos
Antipsicóticos/metabolismo , Clorpromazina/metabolismo , Ensaio Cometa , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Ágar , Metilação
10.
Chem Res Toxicol ; 29(1): 40-6, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26633742

RESUMO

The photoreactivity of fenofibric acid (FA) in the presence of human and bovine serum albumins (HSA and BSA, respectively) has been investigated by steady-state irradiation, fluorescence, and laser flash photolysis (LFP). Spectroscopic measurements allowed for the determination of a 1:1 stoichiometry for the FA/SA complexes and pointed to a moderate binding of FA to the proteins; by contrast, the FA photoproducts were complexed more efficiently with SAs. Covalent photobinding to the protein, which is directly related to the photoallergic properties of the drug, was detected after long irradiation times and was found to be significantly higher in the case of BSA. Intermolecular FA-amino acid and FA-albumin irradiations resulted in the formation of photoproducts arising from coupling between both moieties, as indicated by mass spectrometric analysis. Mechanistic studies using model drug-amino acid linked systems indicated that the key photochemical step involved in photoallergy is formal hydrogen atom transfer from an amino acid residue to the excited benzophenone chromophore of FA or (more likely) its photoproducts. This results in the formation of caged radical pairs followed by C-C coupling to give covalent photoaducts.


Assuntos
Dermatite Fotoalérgica/metabolismo , Fenofibrato/análogos & derivados , Processos Fotoquímicos , Albumina Sérica/química , Animais , Bovinos , Fenofibrato/efeitos adversos , Fenofibrato/química , Fenofibrato/efeitos da radiação , Humanos , Lasers , Estrutura Molecular , Processos Fotoquímicos/efeitos da radiação , Albumina Sérica/efeitos da radiação
11.
Acc Chem Res ; 47(4): 1359-68, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24702062

RESUMO

Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C═X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.

12.
Chem Soc Rev ; 43(12): 4102-22, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24637992

RESUMO

The properties of singlet and triplet excited states are strongly medium-dependent. Hence, these species constitute valuable tools as reporters to probe compartmentalised microenvironments, including drug@protein supramolecular systems. In the present review, the attention is focused on the photophysical properties of the probe drugs (rather than those of the protein chromophores) using transport proteins (serum albumins and α1-acid glycoproteins) as hosts. Specifically, fluorescence measurements allow investigation of the structural and dynamic properties of biomolecules or their complexes. Thus, the emission quantum yields and the decay kinetics of the drug singlet excited states provide key information to determine important parameters such as the stoichiometry of the complex, the binding constant, the relative degrees of occupancy of the different compartments, etc. Application of the FRET concept allows determination of donor-acceptor interchromophoric distances. In addition, anisotropy measurements can be related to the orientation of the drug within the binding sites, where the degrees of freedom for conformational relaxation are restricted. Transient absorption spectroscopy is also a potentially powerful tool to investigate the binding of drugs to proteins, where formation of encapsulated triplet excited states is favoured over other possible processes leading to ionic species (i.e. radical ions), and their photophysical properties are markedly sensitive to the microenvironment experienced within the protein binding sites. Even under aerobic conditions, the triplet lifetimes of protein-complexed drugs are remarkably long, which provides a broad dynamic range for identification of distinct triplet populations or for chiral discrimination. Specific applications of the laser flash photolysis technique include the determination of drug distribution among the bulk solution and the protein binding sites, competition of two types of proteins to bind a drug, occurrence of drug-drug interactions within protein binding sites, enzymatic-like activity of the protein or determination of enantiomeric compositions. The use of proteins as supramolecular hosts modifies the photoreactivity of encapsulated substrates by providing protection against oxygen or other external reagents, by imposing conformational restrictions in the binding pockets, or by influencing the stereochemical outcome. In this review, a selected group of examples is presented including decarboxylation, dehalogenation, nucleophilic addition, dimerisation, oxidation, Norrish type II reaction, photo-Fries rearrangement and 6π electrocyclisation.


Assuntos
Compostos Orgânicos/química , Preparações Farmacêuticas/química , Proteínas/química , Portadores de Fármacos/química , Luz , Preparações Farmacêuticas/metabolismo , Fotólise , Ligação Proteica , Proteínas/metabolismo , Espectrometria de Fluorescência , Espectrofotometria
13.
Photochem Photobiol Sci ; 13(2): 224-30, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24081389

RESUMO

The photooxygenation of model compounds containing the two enantiomers of naproxen (NPX) covalently linked to histidine (His), tryptophan (Trp) and tyrosine (Tyr) has been investigated by steady state irradiation, fluorescence spectroscopy and laser flash photolysis. The NPX-His systems presented the highest oxygen-mediated photoreactivity. Their fluorescence spectra matched that of isolated NPX and showed a clear quenching by oxygen, leading to a diminished production of the NPX triplet excited state ((3)NPX*-His). Analysis of the NPX-His and NPX-Trp photolysates by UPLC-MS-MS revealed in both cases the formation of two photoproducts, arising from the reaction of singlet oxygen ((1)O2) with the amino acid moiety. The most remarkable feature of NPX-Trp systems was a fast and stereoselective intramolecular fluorescence quenching, which prevented the efficient formation of (3)NPX*-Trp, thus explaining their lower reactivity towards photooxygenation. Finally, the NPX-Tyr systems were nearly unreactive and exhibited photophysical properties essentially coincident with those of the parent NPX. Overall, these results point to a type II photooxygenation mechanism, triggered by generation of (1)O2 from the (3)NPX* chromophore.


Assuntos
Aminoácidos/química , Naproxeno/química , Oxigênio/química , Fotólise , Absorção , Modelos Moleculares , Conformação Molecular
14.
Org Biomol Chem ; 12(42): 8428-32, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25223340

RESUMO

The radical anions of ß-lactams, photogenerated in the presence of DABCO as an electron donor, undergo cycloreversion via N-C4 bond cleavage, back electron transfer and final C2-C3 bond cleavage, leading to olefins. The involved intermediates are 1,4-radical anions and 1,4-biradicals. The experimental observations are consistent with the results of DFT calculations.


Assuntos
beta-Lactamas/química , Alcenos/síntese química , Ânions/química , Transporte de Elétrons , Modelos Moleculares , Processos Fotoquímicos , Piperazinas/química , Espectrometria de Fluorescência
15.
ACS Phys Chem Au ; 4(3): 242-246, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38800722

RESUMO

Photon upconversion based on triplet-triplet annihilation (TTA-UC) is an attractive wavelength conversion with increasing use in organic synthesis in the homogeneous phase; however, this technology has not performed with canonical solid catalysts yet. Herein, a BOPHY dye covalently anchored on silica is successfully used as a sensitizer in a TTA system that efficiently catalyzes Mizoroki-Heck coupling reactions. This procedure has enabled the implementation of in-flow reaction conditions for the synthesis of a variety of aromatic compounds, and mechanistic proof has been obtained by means of transient absorption spectroscopy.

16.
Photochem Photobiol Sci ; 12(8): 1375-86, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23615844

RESUMO

The excited states of deoxyadenosine (dA) and 9-methyladenine (9Me-Ade) were studied in water and acetonitrile by a combination of steady-state and time-resolved spectroscopy and quantum chemical calculations. Femtosecond fluorescence upconversion experiments show that the decays of dA and 9Me-Ade after excitation at 267 nm are very similar, confirming that 9Me-Ade is a valid model for the calculations. The fluorescence decays can be described by an ultrafast component (<100 fs) and a slower one (≈ 300-500 fs); they are slightly slower in acetonitrile than in water. Time-dependent DFT calculations on 9Me-Ade, using PBE0 and M052X functionals and including both bulk and specific solvent effects, provide absorption and emission spectra in good agreement with experiments, giving a comprehensive description of the decay mechanism. It is shown that, in the Franck-Condon region, the lowest in energy state is the optically bright La state, with the Lb state situated about 2000 cm(-1) higher. Both states are populated when excited at 267 nm, but the Lb state undergoes an ultrafast Lb → La decay, too fast for our time-resolution (≈ 80 fs). This is confirmed by the experimentally observed fluorescence anisotropies, attaining values lower than 0.4 already at time zero. Consequently, the ensuing excited state relaxation mechanism can be described as the evolution along an almost barrierless path from the Franck-Condon region of the La potential energy surface towards a conical intersection with the ground state. This internal conversion mechanism proceeds without any significant involvement of any near-lying nπ* state.


Assuntos
Acetonitrilas/química , Adenina/análogos & derivados , Desoxiadenosinas/química , Água/química , Adenina/química , Luz , Modelos Moleculares , Teoria Quântica , Espectrometria de Fluorescência
17.
Org Biomol Chem ; 11(12): 1958-63, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23381012

RESUMO

The photochemical processes occurring in diastereomeric dyads (S,S)-1 and (S,R)-1, prepared by conjugation of (S)-2-(2-hydroxy-1,1'-biphenyl-4-yl)propanoic acid ((S)-BPOH) with (S)- and (R)-Trp, have been investigated. In acetonitrile, the fluorescence spectra of (S,S)-1 and (S,R)-1 were coincident in shape and position with that of (S)-BPOH, although they revealed a markedly stereoselective quenching. Since singlet energy transfer from BPOH to Trp is forbidden (5 kcal mol(-1) uphill), the quenching was attributed to thermodynamically favoured (according to Rehm-Weller) electron transfer or exciplex formation. Upon addition of 20% water, the fluorescence quantum yield of (S)-BPOH decreased, while only minor changes were observed for the dyads. This can be explained by an enhancement of the excited state acidity of (S)-BPOH, associated with bridging of the carboxy and hydroxy groups by water, in agreement with the presence of water molecules in the X-ray structure of (S)-BPOH. When the carboxy group was not available for coordination with water, as in the methyl ester (S)-BPOHMe or in the dyads, this effect was prevented; accordingly, the fluorescence quantum yields did not depend on the presence or absence of water. The fluorescence lifetimes in dry acetonitrile were 1.67, 0.95 and 0.46 ns for (S)-BPOH, (S,S)-1 and (S,R)-1, respectively, indicating that the observed quenching is indeed dynamic. In line with the steady-state and time-resolved observations, molecular modelling pointed to a more favourable geometric arrangement of the two interacting chromophores in (S,R)-1. Interestingly, this dyad exhibited a folded conformation in the solid state.


Assuntos
Compostos de Bifenilo/química , Fenilpropionatos/química , Teoria Quântica , Triptofano/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
18.
Phys Chem Chem Phys ; 15(13): 4727-34, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23426282

RESUMO

We report here on the interaction dynamics between flurbiprofen (FBP) and tryptophan (Trp) covalently linked in model dyads and in a complex of FBP with human serum albumin (HSA) probed by time-resolved fluorescence spectroscopy from the femto- to the nano-second timescales. In the dyads, a rapid (k > 10(10) s(-1)) dynamic quenching of the (1)FBP* fluorescence is followed by a slower (k > 10(9) s(-1)) quenching of the remaining (1)Trp* fluorescence. Both processes display a clear stereoselectivity; the rates are 2-3 times higher for the (R,S)-dyad. In addition, a red-shifted exciplex emission is observed, rising in the range of 100-200 ps. A similar two-step dynamic fluorescence quenching is also observed in the FBP-HSA complex, although the kinetics of the involved processes are slower. The characteristic reorientational times determined for the two enantiomeric forms of FBP in the protein show that the interaction is stronger for the (R)-form. This is, to our knowledge, the first observation of stereo-selective flurbiprofen-tryptophan interaction dynamics with femtosecond time resolution.


Assuntos
Flurbiprofeno/química , Teoria Quântica , Albumina Sérica/química , Triptofano/química , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Espectrometria de Fluorescência , Fatores de Tempo
19.
Biomed Pharmacother ; 167: 115593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793275

RESUMO

Talazoparib (TLZ) is a poly(adenosine diphosphate [ADP]-ribose) polymerase inhibitor employed for the treatment of breast cancer. This drug displays an absorption band in the UVA region, and therefore investigation of the possible phototoxic side-effects associated to its administration results of enormous relevance. In this context, we describe here a photochemical and photobiological study to ascertain the photosafety profile of TLZ. Concerning transient species, the singlet and triplet excited states of TLZ were detected by fluorescence (λmax em = 440 nm) and laser flash photolysis experiments (λmax abs = 400 nm), respectively. Remarkably, TLZ irradiation with UVA light in aqueous solution resulted in formation of a stable photooxidated product, TLZ-P, whose absorption band is extended until the visible region. From in vitro experiments, phototoxicity was revealed for the parent drug by neutral red uptake (NRU) assays, with a PIF value of ca 7; besides, TLZ induced formation of reactive oxygen species (ROS) and produced significant damage to both proteins and DNA. By contrast, the singlet and triplet excited states of TLZ-P were not detected, and no photodamage was observed in the NRU experiments. Overall, the results indicate that TLZ induces phototoxicity, whereas its photoproduct exhibits photosafety.


Assuntos
Dermatite Fototóxica , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Luz , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes , Preparações Farmacêuticas
20.
Org Biomol Chem ; 10(39): 7928-32, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22930334

RESUMO

The radical anions of azetidin-2-ones, generated by UV-irradiation in the presence of triethylamine, undergo ring-splitting via N-C4 or C3-C4 bond breaking, leading to open-chain amides. This reactivity diverges from that found for the neutral excited states, which is characterised by α-cleavage. The preference for ß-cleavage is supported by DFT theoretical calculations on the energy barriers associated with the involved transition states. Thus, injection of one electron into the azetidin-2-one moiety constitutes a complementary activation strategy which may be exploited to produce new chemistry.


Assuntos
Azetidinas/síntese química , Ânions/química , Azetidinas/química , Radicais Livres/química , Estrutura Molecular , Teoria Quântica , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA