Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 26(23): 30523-30531, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469950

RESUMO

We demonstrate an optically pumped magnetometer (OPM) operated in a free-induction-decay (FID) configuration that is capable of tracking oscillating magnetic signals in the presence of a 50 µT static field. Excellent waveform reconstruction is demonstrated for low frequency modulations with respect to the Nyquist limited bandwidth. A 100 pT oscillation was successfully reconstructed using signal averaging, and an optimum sensitivity of 3.9 pT/Hz was measured from the spectrum of the residuals relative to the sinusoidal fit. The impact of the pump-probe repetition rate and spin depolarization on the frequency response of the sensor is investigated in detail using miniaturized vapor cell technology, with the (-3 dB) bandwidths residing beyond the Nyquist limit in each case. We also discuss technical limitations associated with the magnetometer when exposed to oscillating fields of sufficiently high amplitude or frequency. This is discussed in the context of potential distortions arising in the reproduced signals, induced by frequency modulation (FM) and aliasing artefacts.

2.
Phys Rev Lett ; 120(4): 040503, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437429

RESUMO

We study causal waveform estimation (tracking) of time-varying signals in a paradigmatic atomic sensor, an alkali vapor monitored by Faraday rotation probing. We use Kalman filtering, which optimally tracks known linear Gaussian stochastic processes, to estimate stochastic input signals that we generate by optical pumping. Comparing the known input to the estimates, we confirm the accuracy of the atomic statistical model and the reliability of the Kalman filter, allowing recovery of waveform details far briefer than the sensor's intrinsic time resolution. With proper filter choice, we obtain similar benefits when tracking partially known and non-Gaussian signal processes, as are found in most practical sensing applications. The method evades the trade-off between sensitivity and time resolution in coherent sensing.

3.
Opt Express ; 25(7): 7849-7858, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380903

RESUMO

A multichannel imaging system is presented, consisting of 25 microfabricated optically-pumped magnetometers. The sensor probes have a footprint of less than 1 cm2 and a sensitive volume of 1.5 mm × 1.5 mm × 1.5 mm and connect to a control unit through optical fibers of length 5 m. Operating at very low ambient magnetic fields, the sensor array has an average magnetic sensitivity of 24 fT/Hz1/2, with a standard deviation of 5 fT/Hz1/2 when the noise of each sensor is averaged between 10 and 50 Hz. Operating in Earth's magnetic field, the magnetometers have a field sensitivity around 5 pT/Hz1/2. The vacuum-packaged sensor heads are optically heated and consume on average 76 ± 7 mW of power each. The heating power is provided by an array of eight diode lasers. Magnetic field imaging of small probe coils was obtained with the sensor array and fits to the expected field pattern agree well with the measured data.

4.
Nat Commun ; 11(1): 2415, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415093

RESUMO

Quantum technologies use entanglement to outperform classical technologies, and often employ strong cooling and isolation to protect entangled entities from decoherence by random interactions. Here we show that the opposite strategy-promoting random interactions-can help generate and preserve entanglement. We use optical quantum non-demolition measurement to produce entanglement in a hot alkali vapor, in a regime dominated by random spin-exchange collisions. We use Bayesian statistics and spin-squeezing inequalities to show that at least 1.52(4) × 1013 of the 5.32(12) × 1013 participating atoms enter into singlet-type entangled states, which persist for tens of spin-thermalization times and span thousands of times the nearest-neighbor distance. The results show that high temperatures and strong random interactions need not destroy many-body quantum coherence, that collective measurement can produce very complex entangled states, and that the hot, strongly-interacting media now in use for extreme atomic sensing are well suited for sensing beyond the standard quantum limit.

5.
Opt Lett ; 34(16): 2519-21, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19684835

RESUMO

We have studied the noise in the optical rotation of a linearly polarized laser beam transmitted through a spin-polarized (133)Cs vapor as a function of its frequency detuning from the optical resonance. Our measurements demonstrate the direct conversion of the laser-frequency noise into optical rotation noise by the dispersive response of the atomic vapor. We describe this noise-conversion process in terms of a simple model that can be used to optimize the performance of atomic devices, such as atomic magnetometers, that use optical rotation as their operational signal.

6.
Sci Rep ; 7: 43994, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266629

RESUMO

Low thermal-equilibrium nuclear spin polarizations and the need for sophisticated instrumentation render conventional nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) incompatible with small-scale microfluidic devices. Hyperpolarized 129Xe gas has found use in the study of many materials but has required very large and expensive instrumentation. Recently a microfabricated device with modest instrumentation demonstrated all-optical hyperpolarization and detection of 129Xe gas. This device was limited by 129Xe polarizations less than 1%, 129Xe NMR signals smaller than 20 nT, and transport of hyperpolarized 129Xe over millimeter lengths. Higher polarizations, versatile detection schemes, and flow of 129Xe over larger distances are desirable for wider applications. Here we demonstrate an ultra-sensitive microfabricated platform that achieves 129Xe polarizations reaching 7%, NMR signals exceeding 1 µT, lifetimes up to 6 s, and simultaneous two-mode detection, consisting of a high-sensitivity in situ channel with signal-to-noise of 105 and a lower-sensitivity ex situ detection channel which may be useful in a wider variety of conditions. 129Xe is hyperpolarized and detected in locations more than 1 cm apart. Our versatile device is an optimal platform for microfluidic magnetic resonance in particular, but equally attractive for wider nuclear spin applications benefitting from ultra-sensitive detection, long coherences, and simple instrumentation.

7.
Rev Sci Instrum ; 86(7): 073104, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233353

RESUMO

We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6 × 10(-8) to 6.9 × 10(-10). The performance equals that of an offset lock employing a second, atom-stabilized laser in the temperature control.

8.
Nat Commun ; 5: 3908, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24844396

RESUMO

Optically hyperpolarized (129)Xe gas has become a powerful contrast agent in nuclear magnetic resonance (NMR) spectroscopy and imaging, with applications ranging from studies of the human lung to the targeted detection of biomolecules. Equally attractive is its potential use to enhance the sensitivity of microfluidic NMR experiments, in which small sample volumes yield poor sensitivity. Unfortunately, most (129)Xe polarization systems are large and non-portable. Here we present a microfabricated chip that optically polarizes (129)Xe gas. We have achieved (129)Xe polarizations >0.5% at flow rates of several microlitres per second, compatible with typical microfluidic applications. We employ in situ optical magnetometry to sensitively detect and characterize the (129)Xe polarization at magnetic fields of 1 µT. We construct the device using standard microfabrication techniques, which will facilitate its integration with existing microfluidic platforms. This device may enable the implementation of highly sensitive (129)Xe NMR in compact, low-cost, portable devices.


Assuntos
Meios de Contraste/síntese química , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/métodos , Isótopos de Xenônio/síntese química , Espectroscopia de Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA