Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Phys Chem Chem Phys ; 25(16): 11338-11349, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37013666

RESUMO

We study the binding mechanism of CO and CO2 in the porous spin-crossover compound Fe(pz)[Pt(CN)4] by combining neutron diffraction (ND), inelastic neutron scattering (INS) and density-functional theory (DFT) calculations. Two adsorption sites are identified, above the open-metal site and between the pyrazine rings. For CO adsorption, the guest molecules are parallel to the neighboring gas molecules and perpendicular to the pyrazine planes. For CO2, the molecules adsorbed on-top of the open-metal site are perpendicular to the pyrazine rings and those between the pyrazines are almost parallel to them. These configurations are consistent with the INS data, which are in good agreement with the computed generalized phonon density of states. The most relevant signatures of the binding occur in the spectral region around 100 cm-1 and 400 cm-1. The first peak blue-shifts for both CO and CO2 adsorption, while the second red-shifts for CO and remains nearly unchanged for CO2. These spectral changes depend both from steric effects and the nature of the interaction. The interpretation of the INS data as supported by the computed binding energy and the molecular orbital analysis are consistent with a physisorption mechanism for both gases. This work shows the strength of the combination of neutron techniques and DFT calculations to characterize in detail the gas adsorption mechanism in this type of materials.

2.
J Chem Phys ; 158(23)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37338027

RESUMO

We used THz (terahertz) and INS (inelastic neutron scattering) spectroscopies to study the interaction between an endohedral noble gas atom and the C60 molecular cage. The THz absorption spectra of powdered A@C60 samples (A = Ar, Ne, Kr) were measured in the energy range from 0.6 to 75 meV for a series of temperatures between 5 and 300 K. The INS measurements were carried out at liquid helium temperature in the energy transfer range from 0.78 to 54.6 meV. The THz spectra are dominated by one line, between 7 and 12 meV, at low temperatures for three noble gas atoms studied. The line shifts to higher energy and broadens as the temperature is increased. Using a spherical oscillator model, with a temperature-independent parameterized potential function and an atom-displacement-induced dipole moment, we show that the change of the THz spectrum shape with temperature is caused by the anharmonicity of the potential function. We find good agreement between experimentally determined potential energy functions and functions calculated with Lennard-Jones additive pair-wise potentials with parameters taken from the work of Pang and Brisse, J. Chem. Phys. 97, 8562 (1993).

3.
J Chem Phys ; 155(14): 144302, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34654304

RESUMO

The interactions between atoms and molecules may be described by a potential energy function of the nuclear coordinates. Nonbonded interactions between neutral atoms or molecules are dominated by repulsive forces at a short range and attractive dispersion forces at a medium range. Experimental data on the detailed interaction potentials for nonbonded interatomic and intermolecular forces are scarce. Here, we use terahertz spectroscopy and inelastic neutron scattering to determine the potential energy function for the nonbonded interaction between single He atoms and encapsulating C60 fullerene cages in the helium endofullerenes 3He@C60 and 4He@C60, synthesized by molecular surgery techniques. The experimentally derived potential is compared to estimates from quantum chemistry calculations and from sums of empirical two-body potentials.

4.
Mol Pharm ; 17(1): 1-9, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31647674

RESUMO

The influence of the amorphization technique on the physicochemical properties of amorphous lactulose was investigated. Four different amorphization techniques were used: quenching of the melt, milling, spray-drying, and freeze-drying, and amorphous samples were analyzed by differential scanning calorimetry, NMR spectroscopy, and powder X-ray diffraction analysis. Special attention was paid to the tautomeric composition and to the glass transition of amorphized materials. It was found that the tautomeric composition of the starting physical state (crystal, liquid, or solution) is preserved during the amorphization process and has a strong repercussion on the glass transition of the material. The correlation between these two properties as well as the plasticizing effect of the different tautomers was clarified by molecular dynamics simulations.


Assuntos
Dessecação/métodos , Lactulose/química , Ciência dos Materiais/métodos , Varredura Diferencial de Calorimetria , Difusão , Liofilização/métodos , Isomerismo , Lactulose/síntese química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Pós , Solubilidade , Vitrificação , Difração de Raios X
5.
Mol Pharm ; 17(1): 10-20, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31710493

RESUMO

Morphological and structural properties of amorphous disaccharide lactulose (C12H22O11), obtained by four different amorphization methods (milling, quenching of the melt form, spray-drying, and freeze-drying), are investigated by scanning electron microscopy, polarized neutron scattering, and molecular dynamics simulations. While major differences on the morphology of the different amorphous samples are revealed by scanning electron microscopy images, only subtle structural differences have been found by polarized neutron scattering. Microstructure of the milled sample appears slightly different from the other amorphized materials with the presence of remaining crystalline germs which are not detected by X-ray diffraction. Quantitative phase analysis shows that these remaining crystallites are present in a ratio between 1 and 4%, and their size remains between 20 and 30 nm despite a long milling time of about 8 h. The impact of the change in tautomeric concentrations on the physical properties of lactulose in the amorphous state has been investigated from molecular dynamics simulations. It is suggested that chemical differences between lactulose tautomers could be at the origin of small structural differences detected by polarized neutron scattering.


Assuntos
Composição de Medicamentos/métodos , Lactulose/química , Varredura Diferencial de Calorimetria , Cristalização , Dessecação , Estabilidade de Medicamentos , Liofilização , Isomerismo , Microscopia Eletrônica de Varredura , Simulação de Dinâmica Molecular , Nêutrons , Tamanho da Partícula , Pós , Difração de Raios X
6.
Chemistry ; 25(26): 6496-6499, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30919526

RESUMO

The interaction of hydrogen with platinum is enormously important in many areas of catalysis. The most significant of these are in polymer electrolyte membrane fuel cells (PEMFC), in which carbon-supported platinum is used to dissociate hydrogen gas at the anode. The nature of adsorbed hydrogen on platinum has been studied for many years on single-crystal surfaces, on high-surface area-platinum metal (Raney platinum and platinum black), and on supported catalysts. Many forms of vibrational spectroscopy have played a key role in these studies, however, there is still no clear consensus as to the assignment of the spectra. In this work, ab initio molecular dynamics (AIMD) and lattice dynamics were used to study a 1.1 nm nanoparticle, Pt44 H80 . The results were compared to new inelastic neutron scattering spectra of hydrogen on platinum black and of a carbon-supported platinum fuel cell catalyst and an assignment scheme that rationalises all previous data is proposed.

7.
Chemphyschem ; 19(3): 266-276, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29131544

RESUMO

We describe the synthesis and characterisation of open fullerene (1) and its reduced form (2) in which CH4 and NH3 are encapsulated, respectively. The 1 H NMR resonance of endohedral NH3 is broadened by scalar coupling to the quadrupolar 14 N nucleus, which relaxes rapidly. This broadening is absent for small satellite peaks, which are attributed to natural abundance 15 N. The influence of the scalar relaxation mechanism on the linewidth of the 1 H ammonia resonance is probed by variable temperature NMR. A rotational correlation time of τc =1.5 ps. is determined for endohedral NH3 , and of τc =57±5 ps. for the open fullerene, indicating free rotation of the encapsulated molecule. IR spectroscopy of NH3 @2 at 5 K identifies three vibrations of NH3 (ν1 , ν3 and ν4 ) redshifted in comparison with free NH3 , and temperature dependence of the IR peak intensity indicates the presence of a large number of excited translational/ rotational states. Variable temperature 1 H NMR spectra indicate that endohedral CH4 is also able to rotate freely at 223 K, on the NMR timescale. Inelastic neutron scattering (INS) spectra of CH4 @1 show both rotational and translational modes of CH4 . Energy of the first excited rotational state (J=1) of CH4 @1 is significantly lower than that of free CH4 .

8.
Phys Chem Chem Phys ; 19(48): 32216-32225, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29131205

RESUMO

A detailed study of the thermal behaviour of atomic motions in the organic ferroelectric croconic acid is presented in the temperature range 5-300 K. Using high-resolution inelastic neutron scattering and first-principles electronic-structure calculations within the framework of density functional theory and a quasiharmonic phonon description of the material, we find that the frequencies of the well defined doublet in inelastic neutron scattering spectra associated with out-of-plane motions of hydrogen-bonded protons decrease monotonically with temperature indicating weakening of these bonding motifs and enhancement of proton motions. Theoretical mean-square displacements for these proton motions are within 5% of experimental values. A detailed analysis of this observable shows that it is unlikely that there is a facile proton transfer along the direction of ferroelectric polarization in the absence of an applied electric field. Calculations predict constrained thermal motion of proton along crystallographic lattice direction c retaining the hydrogen bond motif of the crystal at high temperature. Using the Berry-phase method, we have also calculated the spontaneous polarization of temperature dependent cell structures, and find that our computational model provides a satisfactory description of the anomalous and so far unexplained rise in bulk electric polarization with temperature. Correlating the thermal motion induced lattice strain with temperature dependent spontaneous polarizations, we conclude that increasing thermal strain with temperatures combined with constrained thermal motion along the hydrogen bond motif are responsible of this increase in ferroelectricity at high temperature.

9.
Phys Chem Chem Phys ; 18(42): 29369-29380, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27735010

RESUMO

In this paper we report a methodology for calculating the inelastic neutron scattering spectrum of homonuclear diatomic molecules confined within nano-cavities of spherical symmetry. The method is based on the expansion of the confining potential into multipoles of the coupled rotational and translational angular variables. The Hamiltonian and the INS transition probabilities are evaluated analytically. The method affords a fast and computationally inexpensive way to simulate the inelastic neutron scattering spectrum of molecular hydrogen confined in fullerene cages. The potential energy surface is effectively parametrized in terms of few physical parameters comprising an harmonic term, anharmonic corrections and translation-rotation couplings. The parameters are refined by matching the simulations against the experiments and the excitation modes are identified for transfer energies up to 215 meV.

10.
Phys Chem Chem Phys ; 18(26): 17244-52, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27063287

RESUMO

Two different organic cations (structure directing agents, SDAs) have been selected because of their ability to drive the synthesis of zeolites towards the same microporous material, RUB-13 (RTH), both being organophosphorous compounds. These P containing structure directing agents are characterized by a high concentration of positive charge on the phosphorus atom. Then, in the presence of fluoride anions used in these syntheses, a strong P(+)F(-) electrostatic contribution competes with the van der Waals short range SDAzeolite interaction that drives the zeolite formation. The rotation of the methyl groups present in the SDA is expected to be nearly free if van der Waals interactions dominate, but they will be hindered if the Coulombic P(+)F(-) term forces a closer approach to the SDA towards the zeolite framework. SDAs can be designed a priori to tune which interactions dominate. The rotational mobility of the SDAs, as well as certain related bending modes, has been well tackled by inelastic neutron scattering (INS) in order to test this hypothesis. The INS results provide valuable information for the design of specific SDAs for the synthesis of zeolites.

11.
Phys Chem Chem Phys ; 18(26): 17196-201, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26986759

RESUMO

A combination of electron microscopy, X-ray and neutron spectroscopies and computational methods has provided new insights into the species present on the surface of freshly prepared precious metal catalysts. The results show that in all cases, at least half of the surface is metallic or nearly so, with the remainder covered by oxygen, largely as hydroxide. Water is also present and is strongly held; weeks of pumping under high vacuum is insufficient to remove it. The hydroxyls are reactive as shown by their reaction with or displacement by CO and can be removed by hydrogenation. This clearly has implications for how precious metal catalysts are activated after preparation.

12.
Phys Chem Chem Phys ; 18(36): 24820-24824, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27722548

RESUMO

Understanding the mobility of H at the surface of carbon nanostructures is one of the essential ingredients for a deep comprehension of the catalytic formation of H2 in interstellar clouds. In this paper, we combine neutron vibrational spectroscopy with DFT molecular dynamics simulations to study the local environment of H structures chemisorbed at the surface of disordered graphene sheets. At 5 K, the ground state is composed of large clusters of hydrogen chemisorbed at sp2 carbon sites, on the edges and in voids of the graphene sheets. At temperatures of ∼300 K, a high degree of dispersion of the clusters is observed, involving the breaking and reforming of covalent bonds which, at low temperatures, is mediated by incoherent tunnelling of hydrogen.

13.
Phys Rev Lett ; 113(12): 123001, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25279623

RESUMO

We report an inelastic neutron scattering (INS) study of a H2 molecule encapsulated inside the fullerene C60 which confirms the recently predicted selection rule, the first to be established for the INS spectroscopy of aperiodic, discrete molecular compounds. Several transitions from the ground state of para-H2 to certain excited translation-rotation states, forbidden according to the selection rule, are systematically absent from the INS spectra, thus validating the selection rule with a high degree of confidence. Its confirmation sets a precedent, as it runs counter to the widely held view that the INS spectroscopy of molecular compounds is not subject to any selection rules.

14.
Phys Chem Chem Phys ; 16(39): 21330-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25178254

RESUMO

Inelastic neutron scattering (INS) has been employed to investigate the quantum dynamics of water molecules permanently entrapped inside the cages of C60 fullerene molecules. This study of the supramolecular complex, H2O@C60, provides the unique opportunity to study isolated water molecules in a highly symmetric environment. Free from strong interactions, the water molecule has a high degree of rotational freedom enabling its nuclear spin isomers, ortho-H2O and para-H2O to be separately identified and studied. The INS technique mediates transitions between the ortho and para spin isomers and using three INS spectrometers, the rotational levels of H2O have been investigated, correlating well with the known levels in gaseous water. The slow process of nuclear spin conversion between ortho-H2O and para-H2O is revealed in the time dependence of the INS peak intensities over periods of many hours. Of particular interest to this study is the observed splitting of the ground state of ortho-H2O, raising the three-fold degeneracy into two states with degeneracy 2 and 1 respectively. This is attributed to a symmetry-breaking interaction of the water environment.

15.
J Chem Phys ; 140(5): 054510, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24511955

RESUMO

Transformation of deuterated ethanol from the plastic crystal phase into the monoclinic one is investigated by means of a singular setup combining simultaneously dielectric spectroscopy with neutron diffraction. We postulate that a dynamic transition from plastic crystal to supercooled liquid-like configuration through a deep reorganization of the hydrogen-bonding network must take place as a previous step of the crystallization process. Once these precursor regions are formed, subsequent crystalline nucleation and growth develop with time.

16.
Phys Rev Lett ; 107(2): 025502, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797617

RESUMO

Transformation of deuterated ethanol from supercooled liquid into a plastic crystal or rotator phase is investigated by means of a particular experimental setup combining simultaneously dielectric spectroscopy with neutron diffraction techniques. We demonstrate that, previous to the growth of the bcc lattice of the plastic crystal phase, the formation of a precursor or intermediate phase through a liquid-liquid phase separation takes place. Once this precursor phase is formed, subsequent (plastic) crystalline nucleation and growth is expected to develop.

17.
Nanoscale Adv ; 2(5): 1869-1877, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36132525

RESUMO

By combined use of wide-angle X-ray scattering, thermo-gravimetric analysis, inelastic neutron scattering, density functional theory and density functional theory molecular dynamics simulations, we investigate the structure, dynamics and stability of the water wetting-layer in single-walled aluminogermanate imogolite nanotubes (SW Ge-INTs): an archetypal system for synthetically controllable and monodisperse nano-reactors. We demonstrate that the water wetting-layer is strongly bound and solid-like up to 300 K under atmospheric pressure, with dynamics markedly different from that of bulk water. Atomic-scale characterisation of the wetting-layer reveals organisation of the H2O molecules in a curved triangular sublattice stabilised by the formation of three H-bonds to the nanotube's inner surface, with covalent interactions sufficiently strong to promote energetically favourable decoupling of the H2O molecules in the adlayer. The evidenced changes in the local composition, structure, electrostatics and dynamics of the Ge-INT's inner surface upon the formation of the solid wetting-layer demonstrate solvent-mediated functionalisation of the nanotube's cavity at room temperature and pressure, suggesting new strategies for the design of nano-rectors towards potential control of chemical reactivity in nano-confined volumes.

18.
J Pharm Sci ; 108(2): 880-887, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30244010

RESUMO

In this article, we show that crystalline lactulose can be amorphized directly in the solid state by mechanical milling. Moreover, compared to similar materials, the amorphization kinetics of lactulose is found to be very rapid and the amorphous state thus obtained appears to be very stable against recrystallization on heating. These features make lactulose a model compound for this type of solid state transformation. The ease of crystalline lactulose to be amorphized on milling is explained by comparing elastic constants of lactulose with those of several other disaccharides. These constants have been determined by molecular dynamics simulations. The article also shows how isothermal dissolution calorimetry can be used effectively for the determination of amorphization kinetics during grinding when the usual characterization techniques (differential scanning calorimetry and powder X-ray diffraction) fail.


Assuntos
Lactulose/química , Varredura Diferencial de Calorimetria , Cristalização , Composição de Medicamentos , Difração de Pó , Difração de Raios X
19.
Chem Sci ; 10(2): 480-489, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30713645

RESUMO

The relative amounts of hydrogen retained by a range of supported palladium catalysts have been investigated by a combination of electron microscopy and spectroscopic techniques, including incoherent inelastic neutron scattering. Contrary to expectation, the hydrogen capacity is not determined solely by the metal particle size, but it is a complex interaction between the particle size and its state of aggregation. The nature of the support is not only integral to the amount of hydrogen held by the catalyst, it also causes a marked difference in the rate of release of stored hydrogen from palladium. It is more difficult to fully dehydrogenate palladium on/in the porous activated carbon than on the non-porous carbon black based catalyst. The type of support also results in differences in the form of the residual hydrogen: whether it is α- or ß-hydride phase, subsurface or in the threefold surface site. Our data on the supported catalysts reinforces what has only been seen previously with palladium black and our computational study provides confirmation of the empirical assignments. We also report the first vibrational spectroscopic study of hydrogen adsorbed at the surface of ß-PdH and have observed for the first time hydrogen in the on-top site. This has enabled the relative proportion of bulk- to surface-H occupation in calculated model and in industrial nanoparticles to be estimated.

20.
Chem Sci ; 8(4): 3109-3120, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507686

RESUMO

Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including zeolites and more recently MOFs. However, to reach high selectivities for the separation of gas mixtures is a challenging task that often requires the understanding of the specific interactions established between the porous framework and the gases. Here we propose an approach to obtain an enhanced selectivity based on the use of compartmentalized coordination polymers, named CCP-1 and CCP-2, which are crystalline materials comprising isolated discrete cavities. These compartmentalized materials are excellent candidates for the selective separation of CO2 from methane and nitrogen. A complete understanding of the sorption process is accomplished with the use of complementary experimental techniques including X-ray diffraction, adsorption studies, inelastic- and quasi-elastic neutron scattering, magnetic measurements and molecular dynamics calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA