Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39196302

RESUMO

PURPOSE: [18F]SynVesT-1 is a novel radiopharmaceutical for assessing synaptic density in vivo. This study aims to investigate the potential of [18F]SynVesT-1 positron emission tomography (PET) in evaluating neurological recovery in the rat model of ischemic stroke, and to compare its performance with [18F]FDG PET. METHODS: Sprague-Dawley rats were subjected to photothrombotic cerebral infarction, and safinamide was administered intraperitoneally from day 3 to day 14 post-stroke to alleviate neurological deficits. Cylinder test and forelimb placing test were performed to assess the neurological function. MRI, [18F]SynVesT-1 PET/CT and [18F]FDG PET/CT imaging were used to evaluate infarct volume, synaptic density, and cerebral glucose metabolism pre- and post-treatment. [18F]SynVesT-1 and [18F]FDG PET images were compared using Statistical Parametric Mapping (SPM) and region of interest (ROI)-based analysis. Post-mortem histological analysis was performed to validate PET images. RESULTS: Safinamide treatment improved behavioral outcomes in stroke-damaged rats. Both [18F]SynVesT-1 and [18F]FDG PET detected stroke-induced injury, with the injured region being significantly larger in [18F]FDG PET than in [18F]SynVesT-1 PET. Compared with the saline group, radiotracer uptake in the injured area significantly increased in [18F]SynVesT-1 PET after safinamide treatment, whereas no notable change was observed in [18F]FDG PET. Additionally, [18F]SynVesT-1 PET imaging showed a better correlation with neurological function recovery than [18F]FDG PET. Post-mortem analysis revealed increased neuronal numbers, synaptic density, and synaptic neuroplasticity, as well as decreased glia activation in the stroke-injured area after treatment. CONCLUSION: [18F]SynVesT-1 PET effectively quantified spatiotemporal dynamics of synaptic density in the rat model of stroke, and showed different capabilities in detecting stroke injury and neurological recovery compared with [18F]FDG PET. The utilization of [18F]SynVesT-1 PET holds promise as a potential non-invasive biomarker for evaluating ischemic stroke in conjunction with [18F]FDG PET.

2.
Eur J Nucl Med Mol Imaging ; 51(2): 434-442, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37789188

RESUMO

PURPOSE: Presynaptic dopaminergic positron emission tomography (PET) imaging serves as an essential tool in diagnosing and differentiating patients with suspected parkinsonism, including idiopathic Parkinson's disease (PD) and other neurodegenerative and non-neurodegenerative diseases. The PET tracers most commonly used at the present time mainly target dopamine transporters (DAT), aromatic amino acid decarboxylase (AADC), and vesicular monoamine type 2 (VMAT2). However, established standards for the imaging procedure and interpretation of presynaptic dopaminergic PET imaging are still lacking. The goal of this international consensus is to help nuclear medicine practitioners procedurally perform presynaptic dopaminergic PET imaging. METHOD: A multidisciplinary task group formed by experts from various countries discussed and approved the consensus for presynaptic dopaminergic PET imaging in parkinsonism, focusing on standardized recommendations, procedures, interpretation, and reporting. CONCLUSION: This international consensus and practice guideline will help to promote the standardized use of presynaptic dopaminergic PET imaging in parkinsonism. It will become an international standard for this purpose in clinical practice.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Dopamina/metabolismo , Consenso , Transtornos Parkinsonianos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Doença de Parkinson/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo
3.
J Magn Reson Imaging ; 59(1): 43-57, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246343

RESUMO

Acute kidney injury (AKI) is a frequent complication of critical illness and carries a significant risk of short- and long-term mortality. The prediction of the progression of AKI to long-term injury has been difficult for renal disease treatment. Radiologists are keen for the early detection of transition from AKI to long-term kidney injury, which would help in the preventive measures. The lack of established methods for early detection of long-term kidney injury underscores the pressing needs of advanced imaging technology that reveals microscopic tissue alterations during the progression of AKI. Fueled by recent advances in data acquisition and post-processing methods of magnetic resonance imaging (MRI), multiparametric MRI is showing great potential as a diagnostic tool for many kidney diseases. Multiparametric MRI studies offer a precious opportunity for real-time noninvasive monitoring of pathological development and progression of AKI to long-term injury. It provides insight into renal vasculature and function (arterial spin labeling, intravoxel incoherent motion), tissue oxygenation (blood oxygen level-dependent), tissue injury and fibrosis (diffusion tensor imaging, diffusion kurtosis imaging, T1 and T2 mapping, quantitative susceptibility mapping). The multiparametric MRI approach is highly promising but the longitudinal investigation on the transition of AKI to irreversible long-term impairment is largely ignored. Further optimization and implementation of renal MR methods in clinical practice will enhance our comprehension of not only AKI but chronic kidney diseases. Novel imaging biomarkers for microscopic renal tissue alterations could be discovered and benefit the preventative interventions. This review explores recent MRI applications on acute and long-term kidney injury while addressing lingering challenges, with emphasis on the potential value of the development of multiparametric MRI for renal imaging on clinical systems. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Assuntos
Injúria Renal Aguda , Imagem de Tensor de Difusão , Humanos , Rim/patologia , Imageamento por Ressonância Magnética/métodos , Injúria Renal Aguda/patologia , Espectroscopia de Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos
4.
Eur J Nucl Med Mol Imaging ; 50(3): 765-783, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36372804

RESUMO

Alzheimer's disease (AD) is the most common dementia worldwide. The exact etiology of AD is unclear as yet, and no effective treatments are currently available, making AD a tremendous burden posed on the whole society. As AD is a multifaceted and heterogeneous disease, and most biomarkers are dynamic in the course of AD, a range of biomarkers should be established to evaluate the severity and prognosis. Positron emission tomography (PET) offers a great opportunity to visualize AD from diverse perspectives by using radiolabeled agents involved in various pathophysiological processes; PET imaging technique helps to explore the pathomechanisms of AD comprehensively and find out the most appropriate biomarker in each AD phase, leading to a better evaluation of the disease. In this review, we discuss the application of PET in the course of AD and summarized radiolabeled compounds with favorable imaging characteristics.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Imagem Molecular , Biomarcadores , Peptídeos beta-Amiloides
5.
Cancer ; 128(14): 2704-2716, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417604

RESUMO

During the past several decades, numerous studies have provided insights into biological characteristics of cancer cells and identified various hallmarks of cancer acquired in the tumorigenic processes. However, it is still challenging to image these distinctive traits of cancer to facilitate the management of patients in clinical settings. The rapidly evolving field of positron emission tomography (PET) imaging has provided opportunities to investigate cancer's biological characteristics in vivo. This article reviews the current status of PET imaging on characterizing hallmarks of cancer and discusses the future directions of PET imaging strategies facilitating in vivo cancer phenotyping.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Humanos , Imagem Molecular , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
6.
Eur J Nucl Med Mol Imaging ; 49(3): 895-904, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34978595

RESUMO

PURPOSE: Positron emission tomography (PET) with the first and only tau targeting radiotracer of 18F-flortaucipir approved by FDA has been increasingly used in depicting tau pathology deposition and distribution in patients with cognitive impairment. The goal of this international consensus is to help nuclear medicine practitioners procedurally perform 18F-flortaucipir PET imaging. METHOD: A multidisciplinary task group formed by experts from various countries discussed and approved the consensus for 18F-flortaucipir PET imaging in Alzheimer's disease (AD), focusing on clinical scenarios, patient preparation, and administered activities, as well as image acquisition, processing, interpretation, and reporting. CONCLUSION: This international consensus and practice guideline will help to promote the standardized use of 18F-flortaucipir PET in patients with AD. It will become an international standard for this purpose in clinical practice.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Carbolinas , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Consenso , Humanos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X , Proteínas tau
7.
Eur J Nucl Med Mol Imaging ; 49(4): 1298-1310, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34651227

RESUMO

PURPOSE: This study aimed to develop a novel analytic approach based on 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography ([18F]FDG PET/CT) radiomic signature (RS) and International Prognostic Index (IPI) to predict the progression-free survival (PFS) and overall survival (OS) of patients with diffuse large B-cell lymphoma (DLBCL). METHODS: We retrospectively enrolled 152 DLBCL patients and divided them into a training cohort (n = 100) and a validation cohort (n = 52). A total of 1245 radiomic features were extracted from the total metabolic tumor volume (TMTV) and the metabolic bulk volume (MBV) of pre-treatment PET/CT images. The least absolute shrinkage and selection operator (LASSO) algorithm was applied to develop the RS. Cox regression analysis was used to construct hybrid nomograms based on different RS and clinical variables. The performances of hybrid nomograms were evaluated using the time-dependent receiver operator characteristic (ROC) curve and the Hosmer-Lemeshow test. The clinical utilities of prediction nomograms were determined via decision curve analysis. The predictive efficiency of different RS, clinical variables, and hybrid nomograms was compared. RESULTS: The RS and IPI were identified as independent predictors of PFS and OS, and were selected to construct hybrid nomograms. Both TMTV- and MBV-based hybrid nomograms had significantly higher values of area under the curve (AUC) than IPI in training and validation cohorts (all P < 0.05), while no significant difference was found between TMTV- and MBV-based hybrid nomograms (P > 0.05). The Hosmer-Lemeshow test showed that both TMTV- and MBV-based hybrid nomograms calibrated well in the training and validation cohorts (all P > 0.05). Decision curve analysis indicated that hybrid nomograms had higher net benefits than IPI. CONCLUSION: The hybrid nomograms combining RS with IPI could significantly improve survival prediction in DLBCL. Radiomic analysis on MBV may serve as a potential approach for prognosis assessment in DLBCL. TRIAL REGISTRATION: NCT04317313. Registered March 16, 2020. Public site: https://clinicaltrials.gov/ct2/show/NCT04317313.


Assuntos
Fluordesoxiglucose F18 , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Prognóstico , Estudos Retrospectivos
8.
Eur J Nucl Med Mol Imaging ; 48(12): 3903-3917, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34013405

RESUMO

Coronavirus disease 2019 (COVID-19) has become a major public health problem worldwide since its outbreak in 2019. Currently, the spread of COVID-19 is far from over, and various complications have roused increasing awareness of the public, calling for novel techniques to aid at diagnosis and treatment. Based on the principle of molecular imaging, positron emission tomography (PET) is expected to offer pathophysiological alternations of COVID-19 in the molecular/cellular perspectives and facilitate the clinical management of patients. A number of PET-related cases and research have been reported on COVID-19 over the past one year. This article reviews the current studies of PET in the diagnosis and treatment of COVID-19, and discusses potential applications of PET in the development of management strategy for COVID-19 patients in the pandemic era.


Assuntos
COVID-19 , Pandemias , Humanos , Tomografia por Emissão de Pósitrons , SARS-CoV-2 , Tomografia Computadorizada por Raios X
9.
Eur J Nucl Med Mol Imaging ; 48(8): 2338-2350, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33585964

RESUMO

Pathology is the medical specialty concerned with the study of the disease nature and causes, playing a key role in bridging basic researches and clinical medicine. In the course of development, pathology has significantly expanded our understanding of disease, and exerted enormous impact on the management of patients. However, challenges facing pathology, the inherent invasiveness of pathological practice and the persistent concerns on the sample representativeness, constitute its limitations. Molecular imaging is a noninvasive technique to visualize, characterize, and measure biological processes at the molecular level in living subjects. With the continuous development of equipment and probes, molecular imaging has enabled an increasingly precise evaluation of pathophysiological changes. A new pathophysiology visualization system based on molecular imaging is forming and shows the great potential to reform the pathological practice. Several improvements in "trans-," including trans-scale, transparency, and translation, would be driven by this new kind of pathological practice. Pathological changes could be evaluated in a trans-scale imaging mode; tissues could be transparentized to better present the underlying pathophysiological information; and the translational processes of basic research to the clinical practice would be better facilitated. Thus, transpathology would greatly facilitate in deciphering the pathophysiological events in a multiscale perspective, and supporting the precision medicine in the future.


Assuntos
Fenômenos Biológicos , Imagem Molecular , Humanos , Medicina de Precisão
10.
Eur J Nucl Med Mol Imaging ; 48(12): 3859-3871, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33674892

RESUMO

Normal brain aging is commonly associated with neural activity alteration, ß-amyloid (Aß) deposition, and tau aggregation, driving a progressive cognitive decline in normal elderly individuals. Positron emission tomography (PET) with radiotracers targeting these age-related changes has been increasingly employed to clarify the sequence of their occurrence and the evolution of clinically cognitive deficits. Herein, we reviewed recent literature on PET-based imaging of normal human brain aging in terms of neural activity, Aß, and tau. Neural hypoactivity reflected by decreased glucose utilization with PET imaging has been predominately reported in the frontal, cingulate, and temporal lobes of the normal aging brain. Aß PET imaging uncovers the pathophysiological association of Aß deposition with cognitive aging, as well as the potential mechanisms. Tau-associated cognitive changes in normal aging are likely independent of but facilitated by Aß as indicated by tau and Aß PET imaging. Future longitudinal studies using multi-radiotracer PET imaging combined with other neuroimaging modalities, such as magnetic resonance imaging (MRI) morphometry, functional MRI, and magnetoencephalography, are essential to elucidate the neuropathological underpinnings and interactions in normal brain aging.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Envelhecimento , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Proteínas tau/metabolismo
11.
Eur J Nucl Med Mol Imaging ; 48(3): 708-720, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33216174

RESUMO

PURPOSE: To investigate the post-transplantation behaviour and therapeutic efficacy of human urinary-induced pluripotent stem cell-derived cardiomyocytes (hUiCMs) in infarcted heart. METHODS: We used clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9) technology to integrate a triple-fusion (TF) reporter gene into the AAVS1 locus in human urine-derived hiPSCs (hUiPSCs) to generate TF-hUiPSCs that stably expressed monomeric red fluorescent protein for fluorescence imaging, firefly luciferase for bioluminescence imaging (BLI) and herpes simplex virus thymidine kinase for positron emission tomography (PET) imaging. RESULTS: Transplanted cardiomyocytes derived from TF-hUiPSCs (TF-hUiCMs) engrafted and proliferated in the infarcted heart as monitored by both BLI and PET imaging and significantly improved cardiac function. Under ischaemic conditions, TF-hUiCMs enhanced cardiomyocyte (CM) glucose metabolism and promoted angiogenic activity. CONCLUSION: This study established a CRISPR/Cas9-mediated multimodality reporter gene imaging system that can determine the dynamics and function of TF-hUiCMs in myocardial infarction, which is helpful for investigating the application of stem cell therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genes Reporter , Humanos , Miócitos Cardíacos
12.
Eur Radiol ; 31(12): 9335-9345, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34050803

RESUMO

OBJECTIVES: Atypical benign epilepsy with centro-temporal spikes (BECTS) have less favorable outcomes than typical BECTS, and thus should be accurately identified for adequate treatment. We aimed to investigate the glucose metabolic differences between typical and atypical BECTS using 18F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET) imaging, and explore whether these differences can help distinguish. METHODS: Forty-six patients with typical BECTS, 31 patients with atypical BECTS and 23 controls who underwent [18F]FDG PET examination were retrospectively involved. Absolute asymmetry index (|AI|) was applied to evaluate the severity of metabolic abnormality. Glucose metabolic differences were investigated among typical BECTS, atypical BECTS, and controls by using statistical parametric mapping (SPM). Logistic regression analyses were performed based on clinical, PET, and hybrid features. RESULTS: The |AI| was found significantly higher in atypical BECTS than in typical BECTS (p = 0.040). Atypical BECTS showed more hypo-metabolism regions than typical BECTS, mainly located in the fronto-temporo-parietal cortex. The PET model had significantly higher area under the curve (AUC) than the clinical model (0.91 vs. 0.70, p = 0.006). The hybrid model had the highest sensitivity (0.90), specificity (0.85), and accuracy (0.87) of all three models. CONCLUSIONS: Atypical BECTS showed more widespread and severe hypo-metabolism than typical BECTS, depending on which the two groups can be well distinguished. The combination of metabolic characteristics and clinical variables has the potential to be used clinically to distinguish between typical and atypical BECTS. KEY POINTS: • Distinguishing between typical and atypical BECTS is very important for the formulation of treatment regimens in clinical practice. • Atypical BECTS showed more widespread and severe hypo-metabolism than typical BECTS, mainly located in the fronto-temporo-parietal cortex. • The logistic regression model based on PET outperformed that based on clinical characteristics in classification of typical and atypical BECTS, and the hybrid model achieved the best classification performance.


Assuntos
Epilepsia Rolândica , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Fluordesoxiglucose F18 , Humanos , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos
13.
Nano Lett ; 19(5): 2812-2823, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30908916

RESUMO

Ischemic stroke is a devastating disease and one of the leading causes of mortality worldwide. Overproduction of reactive oxygen and nitrogen species (RONS) following ischemic insult is known as a key factor in exacerbating brain damage. Thus, RONS scavengers that can block excessive production of RONS have great therapeutic potential. Herein, we propose an efficient treatment strategy in which an artificial nanozyme with multienzyme activity drives neuroprotection against ischemic stroke primarily by scavenging RONS. Specifically, through a facile, Bi3+-assisted, template-free synthetic strategy, we developed hollow Prussian blue nanozymes (HPBZs) with multienzyme activity to scavenge RONS in a rat model of ischemic stroke. The comprehensive characteristics of HPBZs against RONS were explored. Apart from attenuating oxidative stress, HPBZs also suppressed apoptosis and counteracted inflammation both in vitro and in vivo, thereby contributing to increased brain tolerance of ischemic injury with minimal side effects. This study provides a proof of concept for a novel class of neuroprotective nanoagents that might be beneficial for treatment of ischemic stroke and other RONS-related disorders.


Assuntos
Isquemia/tratamento farmacológico , Nanocompostos/química , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Ferrocianetos/química , Ferrocianetos/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Isquemia/patologia , Nanocompostos/administração & dosagem , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Acidente Vascular Cerebral/patologia
18.
Neurosci Bull ; 40(6): 743-758, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38483697

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative diseases with a complex pathogenesis. Aggregations formed by abnormal deposition of alpha-synuclein (αSyn) lead to synapse dysfunction of the dopamine and non-dopamine systems. The loss of dopaminergic neurons and concomitant alterations in non-dopaminergic function in PD constitute its primary pathological manifestation. Positron emission tomography (PET), as a representative molecular imaging technique, enables the non-invasive visualization, characterization, and quantification of biological processes at cellular and molecular levels. Imaging synaptic function with PET would provide insights into the mechanisms underlying PD and facilitate the optimization of clinical management. In this review, we focus on the synaptic dysfunction associated with the αSyn pathology of PD, summarize various related targets and radiopharmaceuticals, and discuss applications and perspectives of PET imaging of synaptic dysfunction in PD.


Assuntos
Doença de Parkinson , Tomografia por Emissão de Pósitrons , Sinapses , Doença de Parkinson/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons/métodos , Sinapses/metabolismo , Sinapses/patologia , Animais , alfa-Sinucleína/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
19.
Acta Biomater ; 179: 340-353, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556136

RESUMO

Cellular senescence is a permanent state of cell cycle arrest characterized by increased activity of senescence associated ß-galactosidase (SA-ß-gal). Notably, cancer cells have been also observed to exhibit the senescence response and are being considered for sequential treatment with pro-senescence therapy followed by senolytic therapy. However, there is currently no effective agent targeting ß-galactosidase (ß-Gal) for imaging cellular senescence and monitoring senolysis in cancer therapy. Aggregation-induced emission luminogen (AIEgen) demonstrates strong fluorescence, good photostability, and biocompatibility, making it a potential candidate for imaging cellular senescence and monitoring senolysis in cancer therapy when endowed with ß-Gal-responsive capabilities. In this study, we introduced a ß-Gal-activated AIEgen named QM-ß-gal for cellular senescence imaging and senolysis monitoring in cancer therapy. QM-ß-gal exhibited good amphiphilic properties and formed aggregates that emitted a fluorescence signal upon ß-Gal activation. It showed high specificity towards the activity of ß-Gal in lysosomes and successfully visualized DOX-induced senescent cancer cells with intense fluorescence both in vitro and in vivo. Encouragingly, QM-ß-gal could image senescent cancer cells in vivo for over 14 days with excellent biocompatibility. Moreover, it allowed for the monitoring of senescent cancer cell clearance during senolytic therapy with ABT263. This investigation indicated the potential of the ß-Gal-activated AIEgen, QM-ß-gal, as an in vivo approach for imaging cellular senescence and monitoring senolysis in cancer therapy via highly specific and long-term fluorescence imaging. STATEMENT OF SIGNIFICANCE: This work reported a ß-galactosidase-activated AIEgen called QM-ß-gal, which effectively imaged DOX-induced senescent cancer cells both in vitro and in vivo. QM-ß-gal specifically targeted the increased expression and activity of ß-galactosidase in senescent cancer cells, localized within lysosomes. It was cleared rapidly before activation but maintained stability after activation in the DOX-induced senescent tumor. The AIEgen exhibited a remarkable long-term imaging capability for senescent cancer cells, lasting over 14 days and enabled monitoring of senescent cancer cell clearance through ABT263-induced apoptosis. This approach held promise for researchers seeking to achieve prolonged imaging of senescent cells in vivo.


Assuntos
Senescência Celular , beta-Galactosidase , Senescência Celular/efeitos dos fármacos , beta-Galactosidase/metabolismo , Humanos , Animais , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Camundongos Nus , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/química , Imagem Óptica/métodos
20.
Cancer Rep (Hoboken) ; 6(5): e1813, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36987739

RESUMO

BACKGROUND: Malignant brain tumors are among the most threatening diseases of the central nervous system, and despite increasingly updated treatments, the prognosis has not been improved. Tumor treating fields (TTFields) are an emerging approach in cancer treatment using intermediate-frequency and low-intensity electric field and can lead to the development of novel therapeutic options. RECENT FINDINGS: A series of biological processes induced by TTFields to exert anti-cancer effects have been identified. Recent studies have shown that TTFields can alter the bioelectrical state of macromolecules and organelles involved in cancer biology. Massive alterations in cancer cell proteomics and transcriptomics caused by TTFields were related to cell biological processes as well as multiple organelle structures and activities. This review addresses the mechanisms of TTFields and recent advances in the application of TTFields therapy in malignant brain tumors, especially in glioblastoma (GBM). CONCLUSIONS: As a novel therapeutic strategy, TTFields have shown promising results in many clinical trials, especially in GBM, and continue to evolve. A growing number of patients with malignant brain tumors are being enrolled in ongoing clinical studies demonstrating that TTFields-based combination therapies can improve treatment outcomes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/terapia , Glioblastoma/patologia , Terapia Combinada , Prognóstico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA