Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38811164

RESUMO

The canonical visual cycle employing RPE65 as the retinoid isomerase regenerates 11-cis-retinal to support both rod- and cone-mediated vision. Mutations of RPE65 are associated with Leber congenital amaurosis that results in rod and cone photoreceptor degeneration and vision loss of affected patients at an early age. Dark-reared Rpe65-/- mouse has been known to form isorhodopsin that employs 9-cis-retinal as the photosensitive chromophore. The mechanism regulating 9-cis-retinal synthesis and the role of the endogenous 9-cis-retinal in cone survival and function remain largely unknown. In this study, we found that ablation of fatty acid transport protein-4 (FATP4), a negative regulator of 11-cis-retinol synthesis catalyzed by RPE65, increased the formation of 9-cis-retinal, but not 11-cis-retinal, in a light-independent mechanism in both sexes of RPE65-null rd12 mice. Both rd12 and rd12;Fatp4-/- mice contained a massive amount of all-trans-retinyl esters in the eyes, exhibiting comparable scotopic vision and rod degeneration. However, expression levels of M- and S-opsins as well as numbers of M- and S-cones surviving in the superior retinas of rd12;Fatp4-/ - mice were at least twofold greater than those in age-matched rd12 mice. Moreover, FATP4 deficiency significantly shortened photopic b-wave implicit time, improved M-cone visual function, and substantially deaccelerated the progression of cone degeneration in rd12 mice, whereas FATP4 deficiency in mice with wild-type Rpe65 alleles neither induced 9-cis-retinal formation nor influenced cone survival and function. These results identify FATP4 as a new regulator of synthesis of 9-cis-retinal, which is a "cone-tropic" chromophore supporting cone survival and function in the retinas with defective RPE65.


Assuntos
Proteínas de Transporte de Ácido Graxo , Amaurose Congênita de Leber , Células Fotorreceptoras Retinianas Cones , Animais , Células Fotorreceptoras Retinianas Cones/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Camundongos , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Masculino , Feminino , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , cis-trans-Isomerases/deficiência , Sobrevivência Celular , Camundongos Knockout , Diterpenos , Visão Ocular/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Retinaldeído
2.
BMC Med Educ ; 24(1): 832, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090597

RESUMO

BACKGROUND: Medical school learning environment (MSLE) has a holistic impact on students' psychosomatic health, academic achievements, and personal development. Students in different grades perceive MSLE in different ways. Thus, it is essential to investigate the specific role of student's grade in the perception of MSLE. METHODS: Using the Johns Hopkins Learning Environment Scale (JHLES) as a quantification instrument for the perception level of MSLE, 10,901 medical students in 12 universities in China were categorized into low or high JHLES group according to their questionnaires. We investigated the relationship between student's grade and JHLES category by univariate analysis employing Pearson Chi-square test and Welch's ANOVA. Then multivariable logistic regression analysis confirmed the predictive efficacy of student's grade. A nomogram concerning the prediction of low JHLES score probability in medical students was also constructed. RESULTS: A significant difference between two JHLES categories among students in different grades was observed (p < 0.001), with the proportion of the high JHLES group dominating in grade 1, 5, and the graduate subgroups (p < 0.001). The mean JHLES score declined especially in the third and fourth graders compared to freshmen (p < 0.001), while the mean score among the fifth graders had a remarkable rebound from the third graders (p < 0.001). Most imperatively, identified by multivariable logistic regression analysis, students in grade 3 (OR = 1.470, 95% CI = 1.265-1.709, p < 0.001) and 4 (OR = 1.578, 95% CI = 1.326-1.878, p < 0.001) perceived more negatively than freshmen. The constructed nomogram provided a promising prediction model for student's low JHLES score probability, with accuracy, accordance, and discrimination (area under the curve (AUC) = 0.627). CONCLUSION: The student's grade was a significant influencing factor in medical students' perception of MSLE. The perceptions among the third and fourth graders got worse, probably due to the worrying changes in various aspects of MSLE during that period. The relevant and appropriate interventions to improve medical students' perceptions are urgently needed.


Assuntos
Estudantes de Medicina , Humanos , Estudantes de Medicina/psicologia , Estudos Transversais , China , Feminino , Masculino , Aprendizagem , Inquéritos e Questionários , Faculdades de Medicina , Adulto Jovem , Percepção , Educação de Graduação em Medicina , Adulto
3.
Proc Natl Acad Sci U S A ; 117(50): 32114-32123, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257550

RESUMO

Fatty acid transport protein 4 (FATP4), a transmembrane protein in the endoplasmic reticulum (ER), is a recently identified negative regulator of the ER-associated retinal pigment epithelium (RPE)65 isomerase necessary for recycling 11-cis-retinal, the light-sensitive chromophore of both rod and cone opsin visual pigments. The role of FATP4 in the disease progression of retinal dystrophies associated with RPE65 mutations is completely unknown. Here we show that FATP4-deficiency in the RPE results in 2.8-fold and 1.7-fold increase of 11-cis- and 9-cis-retinals, respectively, improving dark-adaptation rates as well as survival and function of rods in the Rpe65 R91W knockin (KI) mouse model of Leber congenital amaurosis (LCA). Degradation of S-opsin in the proteasomes, but not in the lysosomes, was remarkably reduced in the KI mouse retinas lacking FATP4. FATP4-deficiency also significantly rescued S-opsin trafficking and M-opsin solubility in the KI retinas. The number of S-cones in the inferior retinas of 4- or 6-mo-old KI;Fatp4-/- mice was 7.6- or 13.5-fold greater than those in age-matched KI mice. Degeneration rates of S- and M-cones are negatively correlated with expression levels of FATP4 in the RPE of the KI, KI;Fatp4+/- , and KI;Fatp4-/- mice. Moreover, the visual function of S- and M-cones is markedly preserved in the KI;Fatp4-/- mice, displaying an inverse correlation with the FATP4 expression levels in the RPE of the three mutant lines. These findings establish FATP4 as a promising therapeutic target to improve the visual cycle, as well as survival and function of cones and rods in patients with RPE65 mutations.


Assuntos
Proteínas de Transporte de Ácido Graxo/deficiência , Amaurose Congênita de Leber/fisiopatologia , Retina/patologia , Visão Ocular/fisiologia , cis-trans-Isomerases/genética , Animais , Opsinas dos Cones/metabolismo , Modelos Animais de Doenças , Diterpenos/isolamento & purificação , Proteínas de Transporte de Ácido Graxo/genética , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/patologia , Camundongos , Camundongos Knockout , Mutação , Retina/metabolismo , Retinaldeído/biossíntese , Retinaldeído/isolamento & purificação , cis-trans-Isomerases/metabolismo
4.
J Transl Med ; 20(1): 549, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435786

RESUMO

BACKGROUND: The COVID-19 pandemic has become a huge threat to human health, infecting millions of people worldwide and causing enormous economic losses. Many novel small molecule drugs have been developed to treat patients with COVID-19, including Paxlovid, which block the synthesis of virus-related proteins and replication of viral RNA, respectively. Despite satisfactory clinical trial results, attention is now being paid to the long-term side effects of these antiviral drugs on the musculoskeletal system. To date, no study has reported the possible side effects, such as osteoarthritis, of Paxlovid. This study explored the effects of antiviral drug, Paxlovid, on chondrocyte proliferation and differentiation. METHODS: In this study, both in vitro and in vivo studies were performed to determine the effect of Paxlovid on chondrocyte degeneration and senescence. Furthermore, we explored the possible mechanism behind Paxlovid-induced acceleration of cartilage degeneration using transcriptome sequencing and related inhibitors were adopted to verify the downstream pathways behind such phenomenon. RESULTS: Paxlovid significantly inhibited chondrocyte extracellular matrix protein secretion. Additionally, Paxlovid significantly induced endoplasmic reticulum stress, oxidative stress, and downstream ferroptosis, thus accelerating the senescence and degeneration of chondrocytes. In vivo experiments showed that intraperitoneal injection of Paxlovid for 1 week exacerbated cartilage abrasion and accelerated the development of osteoarthritis in a mouse model. CONCLUSIONS: Paxlovid accelerated cartilage degeneration and osteoarthritis development, potentially by inducing endoplasmic reticulum stress and oxidative stress. Long-term follow-up is needed with special attention to the occurrence and development of osteoarthritis in patients treated with Paxlovid.


Assuntos
COVID-19 , Osteoartrite , Animais , Camundongos , Humanos , Estresse do Retículo Endoplasmático , Pandemias , Oxirredução , Homeostase , Osteoartrite/tratamento farmacológico , Antivirais
5.
J Biol Chem ; 293(39): 15256-15268, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30115683

RESUMO

The retinal pigment epithelium (RPE)-dependent visual cycle provides 11-cis-retinal to opsins in the photoreceptor outer segments to generate functional visual pigments that initiate phototransduction in response to light stimuli. Both RPE65 isomerase of the visual cycle and the rhodopsin visual pigment have recently been identified as critical players in mediating light-induced retinal degeneration. These findings suggest that the expression and function of RPE65 and rhodopsin need to be coordinately controlled to sustain normal vision and to protect the retina from photodamage. However, the mechanism controlling the development of the retinal visual system remains poorly understood. Here, we show that deficiency in ciliary neurotrophic factor (CNTF) up-regulates the levels of rod and cone opsins accompanied by an increase in the thickness of the outer nuclear layers and the lengths of cone and rod outer segments in the mouse retina. Moreover, retinoid isomerase activity, expression levels of RPE65 and lecithin:retinol acyltransferase (LRAT), which synthesizes the RPE65 substrate, were also significantly increased in the Cntf-/- RPE. Rod a-wave and cone b-wave amplitudes of electroretinograms were increased in Cntf-/- mice, but rod b-wave amplitudes were unchanged compared with those in WT mice. Up-regulated RPE65 and LRAT levels accelerated both the visual cycle rate and recovery rate of rod light sensitivity in Cntf-/- mice. Of note, rods and cones in Cntf-/- mice exhibited hypersusceptibility to light-induced degeneration. These results indicate that CNTF is a common extracellular factor that prevents excessive production of opsins, the photoreceptor outer segments, and 11-cis-retinal to protect rods and cones from photodamage.


Assuntos
Aciltransferases/genética , Fator Neurotrófico Ciliar/genética , Retina/metabolismo , Degeneração Retiniana/genética , cis-trans-Isomerases/genética , Animais , Modelos Animais de Doenças , Eletrorretinografia , Humanos , Camundongos , Camundongos Knockout , Transporte Proteico/genética , Retina/patologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinaldeído/metabolismo , Rodopsina/metabolismo
6.
J Neurosci ; 36(21): 5808-19, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225770

RESUMO

UNLABELLED: RPE65, an abundant membrane-associate protein in the retinal pigment epithelium (RPE), is a key retinoid isomerase of the visual cycle necessary for generating 11-cis-retinal that functions not only as a molecular switch for activating cone and rod visual pigments in response to light stimulation, but also as a chaperone for normal trafficking of cone opsins to the outer segments. Many mutations in RPE65 are associated with Leber congenital amaurosis (LCA). A R91W substitution, the most frequent LCA-associated mutation, results in a severe decrease in protein level and enzymatic activity of RPE65, causing cone opsin mislocalization and early cone degeneration in the mutation knock-in mouse model of LCA. Here we show that R91W RPE65 undergoes ubiquitination-dependent proteasomal degradation in the knock-in mouse RPE due to misfolding. The 26S proteasome non-ATPase regulatory subunit 13 mediated degradation specifically of misfolded R91W RPE65. The mutation disrupted membrane-association and colocalization of RPE65 with lecithin:retinol acyltransferase (LRAT) that provides the hydrophobic substrate for RPE65. Systemic administration of sodium 4-phenylbutyrate (PBA), a chemical chaperone, increased protein stability, enzymatic activity, membrane-association, and colocalization of R91W RPE65 with LRAT. This rescue effect increased synthesis of 11-cis-retinal and 9-cis-retinal, a functional iso-chromophore of the visual pigments, led to alleviation of S-opsin mislocalization and cone degeneration in the knock-in mice. Importantly, PBA-treatment also improved cone-mediated vision in the mutant mice. These results indicate that PBA, a U.S. Food and Drug Administration-approved safe oral medication, may provide a noninvasive therapeutic intervention that delays daylight vision loss in patients with RPE65 mutations. SIGNIFICANCE STATEMENT: LCA is a severe early onset retinal dystrophy. Recent clinical trials of gene therapy have implicated the need of an alternative or combination therapy to improve cone survival and function in patients with LCA caused by RPE65 mutations. Using a mouse model carrying the most frequent LCA-associated mutation (R91W), we found that the mutant RPE65 underwent ubiquitination-dependent proteasomal degradation due to misfolding. Treatment of the mice with a chemical chaperone partially corrected stability, enzymatic activity, and subcellular localization of R91W RPE65, which was also accompanied by improvement of cone survival and vision. These findings identify an in vivo molecular pathogenic mechanism for R91W mutation and provide a feasible pharmacological approach that can delay vision loss in patients with RPE65 mutations.


Assuntos
Cegueira/prevenção & controle , Amaurose Congênita de Leber/tratamento farmacológico , Amaurose Congênita de Leber/metabolismo , Fenilbutiratos/administração & dosagem , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , cis-trans-Isomerases/metabolismo , Animais , Cegueira/metabolismo , Cegueira/patologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Amaurose Congênita de Leber/patologia , Masculino , Camundongos , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Resultado do Tratamento , Acuidade Visual/efeitos dos fármacos , cis-trans-Isomerases/genética
7.
Adv Exp Med Biol ; 854: 525-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427455

RESUMO

More than 100 different mutations in the RPE65 gene are associated with inherited retinal degeneration. Although some missense mutations have been shown to abolish isomerase activity of RPE65, the molecular bases leading to loss of function and retinal degeneration remain incompletely understood. Here we show that several missense mutations resulted in significant decrease in expression level of RPE65 in the human retinal pigment epithelium cells. The 26S proteasome non-ATPase regulatory subunit 13, a newly identified negative regulator of RPE65, mediated degradation of mutant RPE65s, which were misfolded and formed aggregates in the cells. Many mutations, including L22P, T101I, and L408P, were mapped on nonactive sites of RPE65. Enzyme activities of these mutant RPE65s were significantly rescued at low temperature, whereas mutant RPE65s with a distinct active site mutation could not be rescued under the same conditions. 4-phenylbutyrate (PBA) displayed a significant synergistic effect on the low temperature-mediated rescue of the mutant RPE65s. Our results suggest that a low temperature eye mask and PBA, a FDA-approved oral medicine, may provide a promising "protein repair therapy" that can enhance the efficacy of gene therapy for delaying retinal degeneration caused by RPE65 mutations.


Assuntos
Proteínas Mutantes/genética , Mutação , Degeneração Retiniana/genética , cis-trans-Isomerases/genética , Western Blotting , Domínio Catalítico/genética , Linhagem Celular , Células Cultivadas , Temperatura Baixa , Células HEK293 , Humanos , Microscopia Confocal , Proteínas Mutantes/metabolismo , Fenilbutiratos/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , cis-trans-Isomerases/metabolismo
8.
J Biol Chem ; 289(27): 18943-56, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24849605

RESUMO

Over 70 different missense mutations, including a dominant mutation, in RPE65 retinoid isomerase are associated with distinct forms of retinal degeneration; however, the disease mechanisms for most of these mutations have not been studied. Although some mutations have been shown to abolish enzyme activity, the molecular mechanisms leading to the loss of enzymatic function and retinal degeneration remain poorly understood. Here we show that the 26 S proteasome non-ATPase regulatory subunit 13 (PSMD13), a newly identified negative regulator of RPE65, plays a critical role in regulating pathogenicity of three mutations (L22P, T101I, and L408P) by mediating rapid degradation of mutated RPE65s via a ubiquitination- and proteasome-dependent non-lysosomal pathway. These mutant RPE65s were misfolded and formed aggregates or high molecular complexes via disulfide bonds. Interaction of PSMD13 with mutant RPE65s promoted degradation of misfolded but not properly folded mutant RPE65s. Many mutations, including L22P, T101I, and L408P, were mapped on non-active sites. Although their activities were very low, these mutant RPE65s were catalytically active and could be significantly rescued at low temperature, whereas mutant RPE65s with a distinct active site mutation could not be rescued under the same conditions. Sodium 4-phenylbutyrate and glycerol displayed a significant synergistic effect on the low temperature rescue of the mutant RPE65s by promoting proper folding, reducing aggregation, and increasing membrane association. Our results suggest that a low temperature eye mask and sodium 4-phenylbutyrate, a United States Food and Drug Administration-approved oral medicine, may provide a promising "protein repair therapy" that can enhance the efficacy of gene therapy by reducing the cytotoxic effect of misfolded mutant RPE65s.


Assuntos
Domínio Catalítico , Doença/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicerol/farmacologia , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Fenilbutiratos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Temperatura , Ubiquitinação/efeitos dos fármacos , cis-trans-Isomerases/química
9.
J Neurosci ; 33(7): 3178-89, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407971

RESUMO

Although rhodopsin is essential for sensing light for vision, it also mediates light-induced apoptosis of photoreceptors in mouse. RPE65, which catalyzes isomerization of all-trans retinyl fatty acid esters to 11-cis-retinol (11cROL) in the visual cycle, controls the rhodopsin regeneration rate and photoreceptor susceptibility to light-induced degeneration. Mutations in RPE65 have been linked to blindness in affected children. Despite such importance, the mechanism that regulates RPE65 function remains unclear. Through unbiased expression screening of a bovine retinal pigment epithelium (RPE) cDNA library, we have identified elongation of very long-chain fatty acids-like 1 (ELOVL1) and fatty acid transport protein 4 (FATP4), which each have very long-chain fatty acid acyl-CoA synthetase (VLCFA-ACS) activity, as negative regulators of RPE65. We found that the VLCFA derivative lignoceroyl (C24:0)-CoA inhibited synthesis of 11cROL, whereas palmitoyl (C16:0)-CoA promoted synthesis of 11cROL. We further found that competition of FATP4 with RPE65 for the substrate of RPE65 was also involved in the mechanisms by which FATP4 inhibits synthesis of 11cROL. FATP4 was predominantly expressed in RPE, and the FATP4-deficient RPE showed significantly higher isomerase activity. Consistent with these results, the regeneration rate of 11-cis-retinaldehyde and the recovery rate for rod light sensitivity were faster in FATP4-deficient mice than wild-type mice. Moreover, FATP4-deficient mice displayed increased accumulation of the cytotoxic all-trans retinaldehyde and hypersusceptibility to light-induced photoreceptor degeneration. Our findings demonstrate that ELOVL1, FATP4, and their products comprise the regulatory elements of RPE65 and play important roles in protecting photoreceptors from degeneration induced by light damage.


Assuntos
Proteínas de Transporte de Ácido Graxo/farmacologia , Luz , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Degeneração Retiniana/prevenção & controle , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , cis-trans-Isomerases/antagonistas & inibidores , Acetiltransferases/farmacologia , Oxirredutases do Álcool/metabolismo , Animais , Western Blotting , Células Cultivadas , Eletrorretinografia , Elongases de Ácidos Graxos , Proteínas de Transporte de Ácido Graxo/genética , Regulação da Expressão Gênica/fisiologia , Biblioteca Gênica , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Elongação Traducional da Cadeia Peptídica , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Retinoides/metabolismo , Transfecção , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
10.
J Neurosci ; 33(44): 17458-68, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24174679

RESUMO

Interphotoreceptor retinoid-binding protein (IRBP) secreted by photoreceptors plays a pivotal role in photoreceptor survival with an unknown mechanism. A mutation in the human IRBP has been linked to retinitis pigmentosa, a progressive retinal degenerative disease. Mice lacking IRBP display severe early and progressive photoreceptor degeneration. However, the signaling pathway(s) leading to photoreceptor death in IRBP-deficient mice remains poorly understood. Here, we show that amounts of tumor necrosis factor-α (TNF-α) in the interphotoreceptor matrix and retinas of Irbp(-/-) mice were increased more than 10-fold and fivefold, respectively, compared with those in wild-type mice. Moreover, TNF-α receptor 1, an important membrane death receptor that mediates both programmed apoptosis and necrosis, was also significantly increased in Irbp(-/-) retina, and was colocalized with peanut agglutinin to the Irbp(-/-) cone outer segments. Although these death signaling proteins were increased, the caspase-dependent and independent apoptotic pathways were mildly activated in the Irbp(-/-) retinas, suggesting that other cell death mechanism(s) also contributes to the extensive photoreceptor degeneration in Irbp(-/-) retina. We found that receptor interacting protein 1 and 3 (RIP1 and RIP3) kinases, the intracellular key mediators of TNF-induced cellular necrosis, were elevated at least threefold in the Irbp(-/-) retinas. Moreover, pharmacological inhibition of RIP1 kinase significantly prevented cone and rod photoreceptor degeneration in Irbp(-/-) mice. These results reveal that RIP kinase-mediated necrosis strongly contributes to cone and rod degeneration in Irbp(-/-) mice, implicating the TNF-RIP pathway as a potential therapeutic target to prevent or delay photoreceptor degeneration in patients with retinitis pigmentosa caused by IRBP mutation.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/metabolismo , Proteínas de Ligação ao Retinol/deficiência , Animais , Proteínas do Olho/genética , Feminino , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Necrose/genética , Necrose/metabolismo , Necrose/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Proteínas de Ligação ao Retinol/genética , Regulação para Cima/genética
11.
J Biol Chem ; 288(16): 11395-406, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23486466

RESUMO

Interphotoreceptor retinoid-binding protein (IRBP) secreted by photoreceptors plays a pivotal role in photoreceptor survival and function. Recently, a D1080N mutation in IRBP was found in patients with retinitis pigmentosa, a frequent cause of retinal degeneration. The molecular and cellular bases for pathogenicity of the mutation are unknown. Here, we show that the mutation abolishes secretion of IRBP and results in formation of insoluble high molecular weight complexes via disulfide bonds. Co-expression of protein disulfide isomerase A2 that regulates disulfide bond formation or introduction of double Cys-to-Ala substitutions at positions 304 and 1175 in D1080N IRBP promoted secretion of the mutated IRBP. D1080N IRBP was not transported to the Golgi apparatus, but accumulated in the endoplasmic reticulum (ER), bound with the ER-resident chaperone proteins such as BiP, protein disulfide isomerase, and heat shock proteins. Splicing of X-box-binding protein-1 mRNA, expression of activating transcription factor 4 (ATF4), and cleavage of ATF6 were significantly increased in cells expressing D1080N IRBP. Moreover, D1080N IRBP induced up-regulation and nuclear translocation of the C/EBP homologous protein, a proapoptotic transcription factor associated with the unfolded protein response. These results indicate that loss of normal function (nonsecretion) and gain of cytotoxic function (ER stress) are involved in the disease mechanisms of D1080N IRBP. Chemical chaperones and low temperature, which help proper folding of many mutated proteins, significantly rescued secretion of D1080N IRBP, suggesting that misfolding is the molecular basis for pathogenicity of D1080N substitution and that chemical chaperones are therapeutic candidates for the mutation-caused blinding disease.


Assuntos
Proteínas do Olho/metabolismo , Mutação de Sentido Incorreto , Dobramento de Proteína , Retinose Pigmentar/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Resposta a Proteínas não Dobradas , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/genética , Substituição de Aminoácidos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas do Olho/genética , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Isomerases de Dissulfetos de Proteínas/biossíntese , Isomerases de Dissulfetos de Proteínas/genética , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Proteínas de Ligação ao Retinol/genética
12.
Chemosphere ; 352: 141501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401864

RESUMO

As a key step in disposal and reutilization, sludge dewatering is very difficult, since extracellular polymers substances (EPS) binds the water, and compressible organic matter deforms and causes water filtration channels to collapse. Sludge dewaterability was demonstrated to enhance by carbonaceous skeleton (CSkel)-assisted thermal hydrolysis in our previously study. This work further investigated the assisting role of different types of CSkel in EPS decomposition during sludge thermal hydrolysis stage and channels reformation during press filtration stage. Two major types of CSkel, lignocellulosic waste (waste sawdust, waste straw, processing by-product) and protein-rich waste (shrimp shells, jatropha oil cake), were selected. The experimental results showed that in the thermal hydrolysis stage, the decomposition of lignocellulosic waste would increase fatty acids production by 28%, resulting in an acidic environment that reduced the total amount of three hydrophilic amino acids, i.e., glycine, serine and threonine. These promoted the release of water from the sludge. In the press filtration stage, average pore size of sludge was reduced by approximately 87% and nanoscale holes began to appear and increase. Assisting of CSkel rebuilt the filtration channels which brought good connectivity between the pores in sludge cake. Lignocellulosic waste proved significantly more effective than protein-rich waste in achieving a water removal rate of 88.63% under 1 MPa. This study provided a basis for selecting suitable CSkel to optimize sludge dewatering for subsequent utilization.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Hidrólise , Filtração , Proteínas/química , Água/química , Esqueleto
13.
Front Nutr ; 11: 1422617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101010

RESUMO

Introduction: This investigation leverages advanced machine learning (ML) techniques to dissect the complex relationship between heavy metal exposure and its impacts on osteoarthritis (OA) and rheumatoid arthritis (RA). Utilizing a comprehensive dataset from the National Health and Nutrition Examination Survey (NHANES) spanning from 2003 to 2020, this study aims to elucidate the roles specific heavy metals play in the incidence and differentiation of OA and RA. Methods: Employing a phased ML strategy that encompasses a range of methodologies, including LASSO regression and SHapley Additive exPlanations (SHAP), our analytical framework integrates demographic, laboratory, and questionnaire data. Thirteen distinct ML models were applied across seven methodologies to enhance the predictability and interpretability of clinical outcomes. Each phase of model development was meticulously designed to progressively refine the algorithm's performance. Results: The results reveal significant associations between certain heavy metals and an increased risk of arthritis. The phased ML approach enabled the precise identification of key predictors and their contributions to disease outcomes. Discussion: These findings offer new insights into potential pathways for early detection, prevention, and management strategies for arthritis associated with environmental exposures. By improving the interpretability of ML models, this research provides a potent tool for clinicians and researchers, facilitating a deeper understanding of the environmental determinants of arthritis.

14.
J Colloid Interface Sci ; 665: 752-763, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554465

RESUMO

Owing to high theoretical capacity, low cost and abundant availability, manganese oxides are widely viewed as promising anodes for lithium-ion batteries (LIBs). Nonetheless, their practical application is significantly hindered by poor electrical conductivity, sluggish reaction kinetics and substantial volume change. In this work, an ingenious polypyrrole encapsulation followed by pyrolysis strategy is proposed to produce N-doped carbon encapsulated Mn2O3/MnO heterojunction (Mn2O3/MnO@NC) by using mechanically ground Mn3O4/C3N4 mixture as the precursor. The results show that the selection of precursor plays a pivotal role in the successful preparation of Mn2O3/MnO@NC hybrid. It is revealed that the uniform encapsulation by N-doped carbon significantly enhances the conductivity and structural stability of the final product. Concurrently, the Mn2O3/MnO heterojunction within the resultant hybrid exhibits a unique quantum-dot size, which effectively shortens ion transport pathways and exposes the active sites for lithium storage. Additionally, experimental observations and theoretical calculations demonstrate that the built-in electric fields generated at the interfaces of Mn2O3/MnO heterojunction accelerate the charge transfer and ion diffusion, thereby enhancing the electrochemical reaction kinetics. As a result, the Mn2O3/MnO@NC hybrid displays much enhanced lithium storage performance. Evidently, our work offers a good guidance for the design and synthesis of advanced transition metal oxide/carbon anodes for LIBs.

15.
Acta Biomater ; 177: 525-537, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360291

RESUMO

TiO2 nanotube topography, as nanomechanical stimulation, can significantly promote osteogenesis and improve the osteointegration on the interface of implants and bone tissue. However, the underlying mechanism has not been fully elucidated. XB130 is a member of the actin filament-associated protein family and is involved in the regulation of cytoskeleton and tyrosine kinase-mediated signalling as an adaptor protein. Whether XB130 is involved in TiO2 nanotubes-induced osteogenic differentiation and how it functions in mechano-biochemical signalling transduction remain to be elucidated. In this study, the role of XB130 on TiO2 nanotube-induced osteogenesis and mechanotransduction was systematically investigated. TiO2 nanotube topography was fabricated via anodic oxidation and characterized. The osteogenic effect was significantly accelerated by the TiO2 nanotube surface in vitro and vivo. XB130 was significantly upregulated during this process. Moreover, XB130 overexpression significantly promoted osteogenic differentiation, whereas its knockdown inhibited it. Filamentous actin depolymerization could change the expression and distribution of XB130, thus affecting osteogenic differentiation. Mechanistically, XB130 could interact with Src and result in the activation of the downstream PI3K/Akt/GSK-3ß/ß-catenin pathway, which accounts for the regulation of osteogenesis. This study for the first time showed that the enhanced osteogenic effect of TiO2 nanotubes could be partly due to the filamentous actin and XB130 mediated mechano-biochemical signalling transduction, which might provide a reference for guiding the design and modification of prostheses to promote bone regeneration and osseointegration. STATEMENT OF SIGNIFICANCE: TiO2 nanotubes topography can regulate cytoskeletal rearrangement and thus promote osteogenic differentiation of BMSCs. However, how filamentous actin converts mechanical stimulus into biochemical activity remains unclear. XB130 is a member of actin filament-associated protein family and involves in the regulation of tyrosine kinase-mediated signalling. Therefore, we hypothesised that XB130 might bridge the mechano-biochemical signalling transduction during TiO2 nanotubes-induced osteogenic differentiation. For the first time, this study shows that TiO2 nanotubes enhance osteogenesis through filamentous actin and XB130 mediated mechanotransduction, which provides new theoretical basis for guiding the design and modification of prostheses to promote bone regeneration and osseointegration.


Assuntos
Nanotubos , Osteogênese , Actinas , Glicogênio Sintase Quinase 3 beta/farmacologia , Mecanotransdução Celular , Fosfatidilinositol 3-Quinases , Citoesqueleto de Actina , Nanotubos/química , Proteínas Tirosina Quinases , Diferenciação Celular , Titânio/farmacologia , Titânio/química
16.
Cell Biosci ; 14(1): 33, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462627

RESUMO

BACKGROUND: Malignant mesothelioma is a type of infrequent tumor that is substantially related to asbestos exposure and has a terrible prognosis. We tried to produce a fibroblast differentiation-related gene set for creating a novel classification and prognostic prediction model of MESO. METHOD: Three databases, including NCBI-GEO, TCGA, and MET-500, separately provide single-cell RNA sequencing data, bulk RNA sequencing profiles of MESO, and RNA sequencing information on bone metastatic tumors. Dimensionality reduction and clustering analysis were leveraged to acquire fibroblast subtypes in the MESO microenvironment. The fibroblast differentiation-related genes (FDGs), which were associated with survival and subsequently utilized to generate the MESO categorization and prognostic prediction model, were selected in combination with pseudotime analysis and survival information from the TCGA database. Then, regulatory network was constructed for each MESO subtype, and candidate inhibitors were predicted. Clinical specimens were collected for further validation. RESULT: A total of six fibroblast subtypes, three differentiation states, and 39 FDGs were identified. Based on the expression level of FDGs, three MESO subtypes were distinguished in the fibroblast differentiation-based classification (FDBC). In the multivariate prognostic prediction model, the risk score that was dependent on the expression level of several important FDGs, was verified to be an independently effective prognostic factor and worked well in internal cohorts. Finally, we predicted 24 potential drugs for the treatment of MESO. Moreover, immunohistochemical staining and statistical analysis provided further validation. CONCLUSION: Fibroblast differentiation-related genes (FDGs), especially those in low-differentiation states, might participate in the proliferation and invasion of MESO. Hopefully, the raised clinical subtyping of MESO would provide references for clinical practitioners.

17.
Front Med (Lausanne) ; 11: 1299805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144657

RESUMO

Background: Study engagement is regarded important to medical students' physical and mental wellbeing. However, the relationship between learning environment of medical schools and the study engagement of medical students was still unclear. This study was aimed to ascertain the positive effect of learning environment in study engagement. Methods: We collected 10,901 valid questionnaires from 12 medical universities in China, and UWES-S was utilized to assess the study engagement levels. Then Pearson Chi-Square test and Welch's ANOVA test were conducted to find the relationship between study engagement and learning environment, and subgroup analysis was used to eradicate possible influence of confounding factors. After that, a multivariate analysis was performed to prove learning environment was an independent factor, and we constructed a nomogram as a predictive model. Results: With Pearson Chi-Square test (p < 0.001) and Welch's ANOVA test (p < 0.001), it proved that a good learning environment contributed to a higher mean of UWES scores. Subgroup analysis also showed statistical significance (p < 0.001). In the multivariate analysis, we could find that, taking "Good" as reference, "Excellent" (OR = 0.329, 95%CI = 0.295-0.366, p < 0.001) learning environment was conducive to one's study engagement, while "Common" (OR = 2.206, 95%CI = 1.989-2.446, p < 0.001), "Bad" (OR = 2.349, 95%CI = 1.597-3.454, p < 0.001), and "Terrible" (OR = 1.696, 95%CI = 1.015-2.834, p = 0.044) learning environment only resulted into relatively bad study engagement. Depending on the result, a nomogram was drawn, which had predictive discrimination and accuracy (AUC = 0.680). Conclusion: We concluded that learning environment of school was an independent factor of medical student's study engagement. A higher level of learning environment of medical school came with a higher level of medical students' study engagement. The nomogram could serve as a predictive reference for the educators and researchers.

18.
Int J Surg ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963751

RESUMO

BACKGROUND: Burn injuries with ≥70% total body surface area (TBSA) are especially acute and life-threatening, leading to severe complications and terrible prognosis, while a powerful model for prediction of overall survival (OS) is lacked. The objective of this study is to identify prognostic factors for the OS of patients with burn injury ≥70% TBSA, construct and validate a feasible predictive model. MATERIALS AND METHODS: Patients diagnosed with burns ≥70% TBSA admitted and treated between 2010 and 2020 in our hospital were included. A cohort of the patients from the Kunshan explosion were assigned as the validation set. The Chi-square test and K-M survival analysis were conducted to identify potential predictors for OS. Then, multi-variate Cox regression analysis was performed to identify the independent factors. Afterwards, we constructed a nomogram to predict OS probability. Finally, the Kunshan cohort was applied as an external validation set. RESULTS: Gender, the percentage of third- and fourth-degree burn as well as organ dysfunction were identified as significant independent factors. A nomogram only based on the factors of the individuals was built and evidenced to have promising predictive accuracy, accordance, and discrimination by both internal and external validation. CONCLUSIONS: This study recognized significant influencing factors for the OS of patients with burns ≥70% TBSA. Furthermore, our nomogram proved to be an effective tool for doctors to quickly evaluate patients' outcomes and make appropriate clinical decisions at an early stage of treatment.

19.
Water Res ; 229: 119409, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462258

RESUMO

High levels of alkali and alkaline earth metals (AAEM, including K, Na, Ca, and Mg) in sludge needs to be removed in pretreatment process for alleviating adverse effects on subsequent disposal. Theoretically, the liquid environment provided by the pretreatment technology of thermal hydrolysis (TH) is the ideal condition for the dissolution of AAEM. Therefore, this work quantified AAEM removal efficiency of TH and carbonaceous skeleton (CSkel) assisted TH that we previously proposed for sludge dewatering. Then the mechanism of AAEM dissociating from sludge was explored through the new perspective of biological structure evolution and chemical species transformation. The results showed that all of the AAEM in raw sludge was trapped in extracellular polymer substances (EPS) and cells. Only the water-soluble K/Na in EPS could be released by TH to the supernatant, the residual K/Na in EPS was organically linked with humic matters that were generated through the degradation of proteins. Water/NH4Ac-soluble K/Na in cells still stayed inside with a more stable form of HCl-soluble after TH. Fortunately, with the assistance of CSkel, this part of K/Na could be leached out due to organic acids derived from hemicellulose decomposition. In such a case, the removal efficiency of K/Na was elevated to 55.5% and 72.5%, respectively. Unlike K/Na, nearly all the Ca/Mg in EPS were transferred to cell residuals during TH. They were combined with the bio-phosphorus in cell residuals as the form of HCl-soluble Ca/Mg-P precipitates, rather than carbonates, sulfates or other compounds. This precipitation reaction was also moderately suppressed in CSkel-assisted TH with low pH, then 7.7% and 34.1% of Ca/Mg were taken away by filtrate. This means that appropriately raising the reaction temperature and adding CSkel with high hemicellulose/cellulose contents can promote the removal of AAEM in sludge during TH process.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Álcalis , Hidrólise , Metais Alcalinoterrosos , Água/química
20.
Front Immunol ; 14: 1098977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845163

RESUMO

Background: Rheumatoid Diseases (RDs) are a group of systemic auto-immune diseases that are characterized by chronic synovitis, and fibroblast-like synoviocytes (FLSs) play an important role in the occurrence and progression of synovitis. Our study is the first to adopt bibliometric analysis to identify the global scientific production and visualize its current distribution in the 21st century, providing insights for future research through the analysis of themes and keywords. Methods: We obtained scientific publications from the core collection of the Web of Science (WoS) database, and the bibliometric analysis and visualization were conducted by Biblioshiny software based on R-bibliometrix. Results: From 2000 to 2022, a total of 3,391 publications were reviewed. China is the most prolific country (n = 2601), and the USA is the most cited country (cited 7225 times). The Center of Experimental Rheumatology at University Hospital Zürich supported the maximum number of articles (n = 40). Steffen Gay published 85 records with 6263 total citations, perhaps making him the most impactful researcher. Arthritis and Rheumatism, Annals of Rheumatic Diseases, and Rheumatology are the top three journals. Conclusion: The current study revealed that rheumatoid disease (RD)-related fibroblast studies are growing. Based on the bibliometric analysis, we summarized three important topics: activation of different subsets of fibroblasts; regulation of fibroblast function; and in vitro validation of existing discoveries. They are all valuable directions, which provide reference and guidance for researchers and clinicians engaged in the research of RDs and fibroblasts.


Assuntos
Artrite Reumatoide , Doenças Reumáticas , Sinovite , Humanos , Masculino , Bibliometria , Fibroblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA