RESUMO
Quantum-dot (QD) light-emitting diodes (QLEDs) are promising candidates for future display technology. An imbalance in the injection of electrons and holes into QLEDs leads to the accumulation of excess charges, predominantly electrons, in the QDs. The precise effects of these accumulated electrons have not yet been fully quantified. This study examines how electron accumulation affects QLED efficiency by operating multiple QLEDs at the same voltage and analyzing the correlation between device efficiency and the number of accumulated electrons, as measured by using electrically pumped transient absorption technology. We analyzed 186 QLED devices made with QDs of different colors and quantum yields. Our results show that when QLEDs utilize QDs with a quantum yield of 95%, electron accumulation indeed reduces device efficiency. However, in QLEDs using QDs with a quantum yield below 70%, a higher density of accumulated electrons enhances the device efficiency.
RESUMO
Photogenerated charge separation is pivotal for effecting efficient photocatalytic reactions. Understanding this process with spatiotemporal resolution is vital for devising highly efficient photocatalysts. Here, we employed pump-probe transient reflection microscopy to directly observe the temporal and spatial evolution of photogenerated electrons and holes on the surface of facet-engineered bismuth vanadate (BiVO4) crystals. The findings suggest that the anisotropic built-in field of BiVO4 crystals propels the separation of photogenerated electrons and holes toward different facets through a two-step process across varying time scales. Photogenerated electrons and holes undergo ultrafast separation within â¼6 ps, with electrons transforming into localized small polarons toward the {010} facets of truncated BiVO4 octahedral crystals. However, the photogenerated holes prolong their separation up to â¼2000 ps in a drift-diffusion manner before ultimately accumulating on the {120} facets. This work provides a comprehensive visualization of spatiotemporal charge separation at the nano/microscale on semiconductor photocatalysts, which is beneficial for understanding the photocatalysis mechanism.
RESUMO
Photocatalysis is an intricate process that involves a multitude of physical and chemical factors operating across diverse temporal and spatial scales. Identifying the dominant factors that influence photocatalyst performance is one of the central challenges in the field. Here, we synthesized a series of perovskite RTaON2 semiconductors with different A-site rare earth atoms (R = Pr, Nd, Sm, and Gd) as model photocatalysts to discuss the influence of the A-site modulation on their local structures as well as both physical and chemical properties and to get insight into the rate-determining step in photocatalytic Z-scheme overall water splitting (OWS). It is interesting to find that, with a decreasing ionic radius of the A-site cations, the RTaON2 compounds exhibit continuous blue shift of light absorption and a concomitant reduction in the lifetime of photogenerated carriers, revealing a significant influence of A-site atoms on the light absorption and charge separation processes. On the other hand, the A-site atomic substitution was revealed to significantly modulate the valence band positions as well as surface oxidation kinetics. By employing the Pt-modified RTaON2 as H2-evolving photocatalysts, the activity of photocatalytic Z-scheme OWS for hydrogen production on them is found to be determined by its surface oxidation process instead of light absorption or charge separation. Our results give the first experimental demonstration of the rate-determining step during the photocatalytic Z-scheme OWS processes, as should be instructive for the design and development of other efficient solar-to-chemical energy conversion systems.
RESUMO
Efficient artificial photosynthesis of disulfide bonds holds promises to facilitate reverse decoding of genetic codes and deciphering the secrets of protein multilevel folding, as well as the development of life science and advanced functional materials. However, the incumbent synthesis strategies encounter separation challenges arising from leaving groups in the âSâSâ coupling reaction. In this study, according to the reaction mechanism of free-radical-triggered âSâSâ coupling, light-driven heterojunction functional photocatalysts are tailored and constructed, enabling them to efficiently generate free radicals and trigger the coupling reaction. Specifically, perovskites and covalent organic frameworks (COFs) are screened out as target materials due to their superior light-harvesting and photoelectronic properties, as well as flexible and tunable band structure. The in situ assembled Z-scheme heterojunction MAPB-M-COF (MAPbBr3 = MAPB, MA+ = CH3 NH2 + ) demonstrates a perfect trade-off between quantum efficiency and redox chemical potential via band engineering management. The MAPB-M-COF achieves a 100% âSâSâ coupling yield with a record photoquantum efficiency of 11.50% and outstanding cycling stability, rivaling all the incumbent similar reaction systems. It highlights the effectiveness and superiority of application-oriented band engineering management in designing efficient multifunctional photocatalysts. This study demonstrates a concept-to-proof research methodology for the development of various integrated heterojunction semiconductors for light-driven chemical reaction and energy conversion.
RESUMO
Photocatalytic generation of H2O2, involving both oxygen reduction and water oxidation without sacrificial agents, necessitates maximized light absorption, suitable band structure, and efficient carrier transport. Leveraging the redox capacity this study designs and constructs a step-scheme heterostructured SnO2/Zn3In2S6 catalyst for H2O2 production from seawater under ambient conditions for the first time. This photocatalyst demonstrates a remarkable H2O2 production rate of 43.5 µmol g⻹ min⻹ without sacrificial agents, which can be increased to 80.7 µmol g⻹ min⻹ with additional O2 injection. Extensive in situ and ex situ characterizations, supported by theoretical calculations, reveal efficient carrier transport and robust redox ability, enabling complete photosynthesis of H2O2 at the oxidation and reduction sites in the S-scheme SnO2/Zn3In2S6 heterojunction. Furthermore, it is hypothesized that substituting SnO2 with other semiconductors such as TiO2, WO3, and BiVO4 can all form S-scheme and the results confirm the feasibility of such catalyst design. Additionally, it demonstrates the recycling and further utilization of the H2O2 produced. These findings offer new insights into the design of heterostructure catalyst architectures and present new opportunities for H2O2 production from seawater at ambient conditions without sacrificial agents.
RESUMO
INTRODUCTION: Breast cancer is one of the most prevalent types of cancer and a leading cause of cancer-related death among females worldwide. Anoikis, a specific type of apoptosis that is triggered by the loss of anchoring between cells and the native extracellular matrix, plays a vital role in cancer invasion and metastasis. However, studies that focus on the prognostic values of anoikis-related genes (ARGs) in breast cancer are scarce. METHODS: Gene expression data were obtained from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases. Five anoikis-related signatures (ARS) were selected from ARGs through univariate Cox regression analysis, LASSO regression analysis, and multivariate Cox regression analysis. Subsequently, an ARGs risk score model was established, and breast cancer patients were divided into high and low risk groups. The correlation between risk groups and overall survival (OS), tumor mutation burden (TMB), tumor microenvironment (TME), stemness, and drug sensitivity were analyzed. Moreover, RT-qPCR was performed to verify the gene expression levels of the five ARS in breast cancer tissues. Furthermore, a nomogram model was constructed based on ARGs risk score and clinicopathological factors. RESULTS: A novel ARGs risk score model was constructed based on five ARS (CEMIP, LAMB3, CD24, PTK6, and PLK1), and breast cancer patients were divided into high and low risk groups. Correlation analysis showed that the high and low risk groups had different OS, TMB, TME, stemness, and drug sensitivity. Both the ARGs risk score model and the nomogram showed promising prognosis predictive value in breast cancer. CONCLUSION: ARS could be used as promising biomarkers for breast cancer prognosis predication and treatment options selection.
Results A novel ARGs risk score model was constructed based on five ARS (CEMIP, LAMB3, CD24, PTK6, and PLK1) and breast cancer patients were divided into high and low risk groups. Correlation analysis showed that high and low risk groups had different OS, TMB, TME, stemness, and drug sensitivity. Both the ARGs risk score model and the nomogram showed promising prognosis predictive value in breast cancer. Introduction Breast cancer is one of the most prevalent types of cancer and a leading cause of cancer-related death among females worldwide. Anoikis, a specific type of apoptosis that is triggered by the loss of anchoring between cells and the native extracellular matrix (ECM), plays a vital role in cancer invasion and metastasis. However, studies that focus on the prognostic values of anoikis-related genes (ARGs) in breast cancer are scarce. Methods The gene expression data were collected from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases, five anoikis-related signatures (ARS) were selected from ARGs through univariate Cox regression analysis, LASSO regression analysis, and multivariate Cox regression analysis, then an ARGs risk score model was established and breast cancer patients were divided into high and low risk groups. The correlation between risk groups and overall survival (OS), tumor mutation burden (TMB), tumor microenvironment (TME), stemness, and drug sensitivity were analyzed. Moreover, RT-qPCR was performed to verify the gene expression levels of five ARS in breast cancer tissues. Furthermore, a nomogram model was constructed based on ARGs risk score and clinicopathological factors.
Assuntos
Anoikis , Neoplasias da Mama , Microambiente Tumoral , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Feminino , Anoikis/genética , Prognóstico , Biomarcadores Tumorais/genética , Nomogramas , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Pessoa de Meia-Idade , Perfilação da Expressão GênicaRESUMO
Lighting accounts for one-fifth of global electricity consumption1. Single materials with efficient and stable white-light emission are ideal for lighting applications, but photon emission covering the entire visible spectrum is difficult to achieve using a single material. Metal halide perovskites have outstanding emission properties2,3; however, the best-performing materials of this type contain lead and have unsatisfactory stability. Here we report a lead-free double perovskite that exhibits efficient and stable white-light emission via self-trapped excitons that originate from the Jahn-Teller distortion of the AgCl6 octahedron in the excited state. By alloying sodium cations into Cs2AgInCl6, we break the dark transition (the inversion-symmetry-induced parity-forbidden transition) by manipulating the parity of the wavefunction of the self-trapped exciton and reduce the electronic dimensionality of the semiconductor4. This leads to an increase in photoluminescence efficiency by three orders of magnitude compared to pure Cs2AgInCl6. The optimally alloyed Cs2(Ag0.60Na0.40)InCl6 with 0.04 per cent bismuth doping emits warm-white light with 86 ± 5 per cent quantum efficiency and works for over 1,000 hours. We anticipate that these results will stimulate research on single-emitter-based white-light-emitting phosphors and diodes for next-generation lighting and display technologies.
RESUMO
Crystal structural rearrangements unavoidably introduce defects into materials, where even these small changes in local lattice structure could arouse a prominent impact on the overall nature of crystals. Contrary to the traditional notion that defects obstruct carrier transport, herein, we report a promoted transport mechanism of nonluminescent carriers in single-crystalline CH3NH3PbI3 nanowires (1345.2â cm2 V-1 s-1, about a 14-fold improvement), enabled by the phase transition induced defects (PTIDs). Carriers captured by PTIDs evade both the radiative and non-radiative recombinations during the incomplete tetragonal-to-orthorhombic phase transition at low temperatures, forming a specific nonluminescent state that exhibits an efficient long-distance transport and thereby realize a prominent enhancement of photocurrent responsivity for photodetector applications. The findings provide broader insights into the carrier transport mechanism in perovskite semiconductors and have significant implications for their rational design for photoelectronic applications at varied operating temperatures.
RESUMO
Two-dimensional (2D) halide perovskites represent the natural semiconductor quantum wells (QWs), which hold great promise for optoelectronics. However, due to the hybrid structure of Ruddlesden-Popper 2D perovskites, the intrinsic nature of hot-carrier kinetics remains shielded within. Herein, we adopt CsPbBr3 nanoplates as a model system to reveal the intrinsic carrier dynamics in inorganic perovskite QWs. Interestingly, we revealed an ultrafast and hot-phonon-bottleneck (HPB)-free carrier cooling in monodisperse CsPbBr3 QWs, which is in sharp contrast to the bulk and nanocrystalline perovskites. The absence of HPB was attributed to the efficient out-of-plane triplet-exciton-LO-phonon coupling in 2D perovskites because of the structural anisotropy. Accordingly, the HPB can be activated by shutting down the out-of-plane energy loss route through forming the layer-stacked perovskite superlattice. The controllable on and off of HPB may provide new possibilities in optoelectronic devices and these findings deepen the understanding of a hot-carrier cooling mechanism in 2D perovskites.
RESUMO
Bismuth Vanadate (BiVO4 ) photoanode has been popularly investigated for promising solar water oxidation, but its intrinsic performance has been greatly retarded by the direct pyrolysis method. Here we insight the key restriction of BiVO4 prepared by metal-organic decomposition (MOD) method. It is found that the evaporation of vanadium during the pyrolysis tends to cause a substantial phase impurity, and the unexpected few tetragonal phase inhibits the charge separation evidently. Consequently, suitably excessive vanadium precursor was adopted to eliminate the phase impurity, based on which the obtained intrinsic BiVO4 photoanode could exhibit photocurrent density of 4.2â mA cm-2 at 1.23â VRHE under AM 1.5 G irradiation, as comparable to the one fabricated by the currently popular two-step electrodeposition method. Furthermore, the excellent performance can be maintained on the enlarged photoanode (25â cm2 ), demonstrating the advantage of MOD method in scalable preparation. Our work provides new insight and highlights the glorious future of MOD method for the design of scale-up efficient BiVO4 photoanode.
RESUMO
Low-dimensional (low-D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low-D OMHHs, especially the zero-D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near-unity photoluminescence quantum yield (PLQY) at around 6.0â GPa in a 0D OMHH, [(C6 H5 )4 P]2 SbCl5 . In situ experimental characterizations and theoretical simulations reveal that the pressure-induced electronic coupling between the lone-pair electrons of Sb3+ and the π electrons of benzene ring (lp-π interaction) serves as an unexpected "bridge" for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp-π interactions in organic-inorganic hybrid systems.
RESUMO
Development of water-stable metal-organic frameworks (MOFs) for promising visible-light-driven photocatalytic water splitting is highly desirable but still challenging. Here we report a novel p-type nickel-based MOF single crystal (Ni-TBAPy-SC) and its exfoliated nanobelts (Ni-TBAPy-NB) that can bear a wide range of pH environment in aqueous solution. Both experimental and theoretical results indicate a feasible electron transfer from the H4TBAPy ligand (light-harvesting center) to the Ni-O cluster node (catalytic center), on which water splitting to produce hydrogen can be efficiently driven free of cocatalyst. Compared to the single crystal, the exfoliated two-dimensional (2D) nanobelts show more efficient charge separation due to its shortened charge transfer distance and remarkably enhanced active surface areas, resulting in 164 times of promoted water reduction activity. The optimal H2 evolution rate on the nanobelt reaches 98 µmol h-1 (ca. 5 mmol h-1 g-1) showing benchmarked apparent quantum efficiency (AQE) of 8.0% at 420 nm among water-stable MOFs photocatalysts.
RESUMO
Colloidal CdSe nanoplatelets (NPLs) have substantial potential in light-emitting applications because of their quantum-well-like characteristics. The self-trapped state (STS), originating from strong electron-phonon coupling (EPC), is promising in white light luminance because of its broadband emission. However, achieving STS in CdSe NPLs is extremely challenging because of their intrinsic weak EPC nature. Herein, we developed a strong STS emission in the spectral range of 450-600 nm by building superlattice (SL) structures with colloidal CdSe NPLs. We demonstrated that STS is generated via strong coupling of excitons and zone-folded longitudinal acoustic phonons with formation time of â¼450 fs and localization length of â¼0.56 nm. The Huang-Rhys factor, describing the EPC strength in SL structure, is estimated to be â¼19.9, which is much larger than that (â¼0.1) of monodispersed CdSe NPLs. Our results provide an in-depth understanding of STS and a platform for generating and manipulating STS by designing SL structures.
RESUMO
Two-dimensional (2D) layered perovskites are naturally formed multiple quantum-well (QW) materials, holding great promise for applications in many optoelectronic devices. However, the further use of 2D layered perovskites in some devices is limited by the lack of QW-to-QW carrier transport/transfer due to the energy barrier formed by the insulating ligands between QWs. Herein, we report an Auger-assisted electron transfer between adjacent QWs in (CmH2m+1NH3)2PbI4 2D perovskites particularly with m = 12 and 18, where the electron energy barrier (Eb) is similar to the QW band gap energy (Eg). This Auger-assisted QW-to-QW electron transfer mechanism is established by the observation of a long-lived and derivative-like transient absorption feature, which is a signature of the quantum confined Stark effect induced by the electron-hole separation (thus an internal electric field) between different QW layers. Our finding provides a new guideline to design 2D perovskites with an optically tunable QW-to-QW charge transport property, advancing their applications in optoelectronics and optical modulations.
RESUMO
Layered two-dimensional (2D) lead halide perovskites are a class of quantum well (QW) materials, holding dramatic potentials for optical and optoelectronic applications. However, the thermally activated exciton dissociation into free carriers in 2D perovskites, a key property that determines their optoelectronic performance, was predicted to be weak due to large exciton binding energy (Eb, about 100-400 meV). Herein, in contrast to the theoretical prediction, we discover an ultrafast (<1.4 ps) and highly efficient (>80%) internal exciton dissociation in (PEA)2(MA)n-1PbnI3n+1 (PEA = C6H5C2H4NH3+, MA = CH3NH3+, n = 2-4) 2D perovskites despite the large Eb. We demonstrate that the exciton dissociation activity in 2D perovskites is significantly promoted because of the formation of exciton-polarons with considerably reduced exciton binding energy (down to a few tens of millielectronvolts) by the polaronic screening effect. This ultrafast and high-yield exciton dissociation limits the photoluminescence of 2D perovskites but on the other hand well explains their exceptional performance in photovoltaic devices. The finding should represent a common exciton property in the 2D hybrid perovskite family and provide a guideline for their rational applications in light emitting and photovoltaics.
RESUMO
Single-atom metal-insulator-semiconductor (SMIS) heterojunctions based on Sn-doped Fe2 O3 nanorods (SF NRs) were designed by combining atomic deposition of an Al2 O3 overlayer with chemical grafting of a RuOx hole-collector for efficient CO2 -to-syngas conversion. The RuOx -Al2 O3 -SF photoanode with a 3.0â nm thick Al2 O3 overlayer gave a >5-fold-enhanced IPCE value of 52.0 % under 370â nm light irradiation at 1.2â V vs. Ag/AgCl, compared to the bare SF NRs. The dielectric field mediated the charge dynamics at the Al2 O3 /SF NRs interface. Accumulation of long-lived holes on the surface of the SF NRs photoabsorber aids fast tunneling transfer of hot holes to single-atom RuOx species, accelerating the O2 -evolving reaction kinetics. The maximal CO-evolution rate of 265.3â mmol g-1 h-1 was achieved by integration of double SIMS-3 photoanodes with a single-atom Ni-doped graphene CO2 -reduction-catalyst cathode; an overall quantum efficiency of 5.7 % was recorded under 450â nm light irradiation.
RESUMO
Layered two-dimensional (2D) hybrid perovskites are naturally formed multiple quantum well (QW) materials with promising applications in quantum and optoelectronic devices. In principle, the transport of excitons in 2D perovskites is limited by their short lifetime and small mobility to a distance within a few hundred nanometers. Herein, we report an observation of long-distance carrier transport over 2 to 5 µm in 2D perovskites with various well thicknesses. Such a long transport distance is enabled by trap-induced exciton dissociation into long-lived and nonluminescent electron-hole separated state, followed by a trap-mediated charge transport process. This unique property makes 2D perovskites comparable with 3D perovskites and other traditional semiconductor QWs in terms of a carrier transport property and highlights their potential application as an efficient energy/charge-delivery material.
RESUMO
The recombination of electron-hole pairs severely detracts from the efficiency of photocatalysts. This issue could be addressed in metal-organic frameworks (MOFs) through optimization of the charge-transfer kinetics via rational design of structures at atomic level. Herein, a pyrazolyl porphyrinic Ni-MOF (PCN-601), integrating light harvesters, active catalytic sites, and high surface areas, has been demonstrated as a superior and durable photocatalyst for visible-light-driven overall CO2 reduction with H2O vapor at room temperature. Kinetic studies reveal that the robust coordination spheres of pyrazolyl groups and Ni-oxo clusters endow PCN-601 with proper energy band alignment and ultrafast ligand-to-node electron transfer. Consequently, the CO2-to-CH4 production rate of PCN-601 far exceeds those of the analogous MOFs based on carboxylate porphyrin and the classic Pt/CdS photocatalyst by more than 3- and 20-fold, respectively. The reaction avoids the use of hole scavengers and proceeds in a gaseous phase which can take full advantage of the high gas uptake of MOFs. This work demonstrates that the rational design of coordination spheres in MOF structures not only reconciles the contradiction between reactivity and stability but also greatly promotes the interfacial charge transfer to achieve optimized kinetics, providing guidance for the design of highly efficient MOF photocatalysts.
RESUMO
Combining the features of host templates and guest species is an efficient strategy to optimize the photo/electrocatalytic performance. Herein, novel host-guest thin-film electrocatalysts are designed and developed with Pt doped carbon (Pt/C) confined into porphyrin-based metal-organic frameworks (MOFs). Porous MOF PCN-222 and PCN-221 thin films are used as the host templates and fabricated using vapor-assisted deposition method, and then the guest Pt/C quantum dots are encapsulated into the MOFs by loading the glucose mixed H2 PtCl6 and heating at 200 °C. Thanks to the confinement effect of MOF pores, the homogenous and ultrafine Pt/C nanowires (Pt/CNWs) and nanodots (Pt/CNDs) are confined in nanochannels of PCN-222 and nanocages of PCN-221 (Pt/CNW@PCN-222 and Pt/CND@PCN-221), respectively. The electrocatalytic study shows that the host-guest thin films have highly-efficient electrocatalytic hydrogen evolution performance under light irradiation. Furthermore, the time-resolved photoluminescent results reveal that Pt/CNW@PCN-222 has a faster charge transfer (441 ps) from PCN-222 to Pt/CNWs comparing to that (557 ps) of Pt/CND@PCN-221, indicating the guests with different shapes play an important role in the electrocatalytic performance. This work serves to present both the outstanding level of control in the precise synthesis and high potential for nanocomposite thin films in photo-electrocatalytic application.
RESUMO
Perovskite solar cells based on two-dimensional/three-dimensional (2D/3D) hierarchical structure have attracted significant attention in recent years due to their promising photovoltaic performance and stability. However, obtaining a detailed understanding of interfacial mechanism at the 2D/3D heterojunction, for example, the ligand-chemistry-dependent nature of the 2D/3D heterojunction and its influence on charge collection and the final photovoltaic outcome, is not yet fully developed. Here we demonstrate the underlying 3D phase templates growth of quantum wells (QWs) within a 2D capping layer, which is further influenced by the fluorination of spacers and compositional engineering in terms of thickness distribution and orientation. Better QW alignment and faster dynamics of charge transfer at the 2D/3D heterojunction result in higher charge mobility and lower charge recombination loss, largely explaining the significant improvements in charge collection and open-circuit voltage (VOC) in complete solar cells. As a result, 2D/3D solar cells with a power-conversion efficiency of 21.15% were achieved, significantly higher than the 3D counterpart (19.02%). This work provides key missing information on how interfacial engineering influences the desirable electronic properties of the 2D/3D hierarchical films and device performance via ligand chemistry and compositional engineering in the QW layer.