Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Magn Reson Imaging ; 59(1): 108-119, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078470

RESUMO

BACKGROUND: Vessels encapsulating tumor cluster (VETC) is a critical prognostic factor and therapeutic predictor of hepatocellular carcinoma (HCC). However, noninvasive evaluation of VETC remains challenging. PURPOSE: To develop and validate a deep learning radiomic (DLR) model of dynamic contrast-enhanced MRI (DCE-MRI) for the preoperative discrimination of VETC and prognosis of HCC. STUDY TYPE: Retrospective. POPULATION: A total of 221 patients with histologically confirmed HCC and stratified this cohort into training set (n = 154) and time-independent validation set (n = 67). FIELD STRENGTH/SEQUENCE: A 1.5 T and 3.0 T; DCE imaging with T1-weighted three-dimensional fast spoiled gradient echo. ASSESSMENT: Histological specimens were used to evaluate VETC status. VETC+ cases had a visible pattern (≥5% tumor area), while cases without any pattern were VETC-. The regions of intratumor and peritumor were segmented manually in the arterial, portal-venous and delayed phase (AP, PP, and DP, respectively) of DCE-MRI and reproducibility of segmentation was evaluated. Deep neural network and machine learning (ML) classifiers (logistic regression, decision tree, random forest, SVM, KNN, and Bayes) were used to develop nine DLR, 54 ML and clinical-radiological (CR) models based on AP, PP, and DP of DCE-MRI for evaluating VETC status and association with recurrence. STATISTICAL TESTS: The Fleiss kappa, intraclass correlation coefficient, receiver operating characteristic curve, area under the curve (AUC), Delong test and Kaplan-Meier survival analysis. P value <0.05 was considered as statistical significance. RESULTS: Pathological VETC+ were confirmed in 68 patients (training set: 46, validation set: 22). In the validation set, DLR model based on peritumor PP (peri-PP) phase had the best performance (AUC: 0.844) in comparison to CR (AUC: 0.591) and ML (AUC: 0.672) models. Significant differences in recurrence rates between peri-PP DLR model-predicted VETC+ and VETC- status were found. DATA CONCLUSIONS: The DLR model provides a noninvasive method to discriminate VETC status and prognosis of HCC patients preoperatively. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 2.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Teorema de Bayes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagem , Prognóstico , Imageamento por Ressonância Magnética
2.
Abdom Radiol (NY) ; 49(4): 1074-1083, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175256

RESUMO

PURPOSE: This study aimed to build and evaluate a deep learning (DL) model to predict vessels encapsulating tumor clusters (VETC) and prognosis preoperatively in patients with hepatocellular carcinoma (HCC). METHODS: 320 pathologically confirmed HCC patients (58 women and 262 men) from two hospitals were included in this retrospective study. Institution 1 (n = 219) and Institution 2 (n = 101) served as the training and external test cohorts, respectively. Tumors were evaluated three-dimensionally and regions of interest were segmented manually in the arterial, portal venous, and delayed phases (AP, PP, and DP). Three ResNet-34 DL models were developed, consisting of three models based on a single sequence. The fusion model was developed by inputting the prediction probability of the output from the three single-sequence models into logistic regression. The area under the receiver operating characteristic curve (AUC) was used to compare performance, and the Delong test was used to compare AUCs. Early recurrence (ER) was defined as recurrence within two years of surgery and early recurrence-free survival (ERFS) rate was evaluated by Kaplan-Meier survival analysis. RESULTS: Among the 320 HCC patients, 227 were VETC- and 93 were VETC+ . In the external test cohort, the fusion model showed an AUC of 0.772, a sensitivity of 0.80, and a specificity of 0.61. The fusion model-based prediction of VETC high-risk and low-risk categories exhibits a significant difference in ERFS rates, akin to the outcomes observed in VETC + and VETC- confirmed through pathological analyses (p < 0.05). CONCLUSIONS: A DL framework based on ResNet-34 has demonstrated potential in facilitating non-invasive prediction of VETC as well as patient prognosis.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Neoplasias Vasculares , Masculino , Humanos , Feminino , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Estudos Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Imageamento por Ressonância Magnética , Prognóstico
3.
Patient Educ Couns ; 123: 108195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38340632

RESUMO

OBJECTIVE: To explore the effects of using the teach-back method prior to contrast-enhanced magnetic resonance imaging (MRI) on patients' knowledge and satisfaction as well as the clarity of the resulting scans. METHODS: A total of 254 patients who underwent contrast-enhanced MRI examination from July 4, 2022 to September 19, 2022 were enrolled and assigned to the intervention and control groups. Patients in the intervention group received education using the teach-back method, while those in the control group were given routine health education. A questionnaire that included patients' knowledge of contrast-enhanced MRI examination was answered before and after patient education. Data on patient satisfaction with nursing services were also collected. The clarity of the MRI images of all patients was assessed. RESULTS: The scores of knowledge related to MRI after receiving education were significantly higher than those before receiving education (P < 0.001), and there were no significant differences between the intervention and control groups (11.27 ± 9.74 vs. 12.07 ± 8.71, P = 0.498). The score of satisfaction with nursing service in the teach-back group was significantly higher than that in the control group (39.82 ± 0.86 vs. 38.59 ± 3.73, P < 0.001), as was the image clarity score (96.4 ± 0.5 vs. 95.0 ± 0.4, P = 0.039). CONCLUSION: Teach-back improves patient satisfaction and contrast-enhanced MRI clarity. PRACTICE IMPLICATIONS: Including teach-back in patient education improves patient satisfaction and contrast-enhanced MRI clarity.


Assuntos
Educação de Pacientes como Assunto , Satisfação do Paciente , Humanos , Educação em Saúde , Imageamento por Ressonância Magnética , Escolaridade
4.
Acad Radiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39025700

RESUMO

RATIONALE AND OBJECTIVES: To develop and validate a clinical-radiomics model of dynamic contrast-enhanced MRI (DCE-MRI) for the preoperative discrimination of Vessels encapsulating tumor clusters (VETC)- microvascular invasion (MVI) and prognosis of hepatocellular carcinoma (HCC). MATERIALS AND METHODS: 219 HCC patients from Institution 1 were split into internal training and validation groups, with 101 patients from Institution 2 assigned to external validation. Histologically confirmed VETC-MVI pattern categorizing HCC into VM-HCC+ (VETC+/MVI+, VETC-/MVI+, VETC+/MVI-) and VM-HCC- (VETC-/MVI-). The regions of intratumor and peritumor were segmented manually in the arterial, portal-venous and delayed phase (AP, PP, and DP, respectively) of DCE-MRI. Six radiomics models (intratumor and peritumor in AP, PP, and DP of DCE-MRI) and one clinical model were developed for assessing VM-HCC. Establishing intra-tumoral and peri-tumoral models through combining intratumor and peritumor features. The best-performing radiomics model and the clinical model were then integrated to create a Combined model. RESULTS: In institution 1, pathological VM-HCC+ were confirmed in 88 patients (training set: 61, validation set: 27). In internal testing, the Combined model had an AUC of 0.85 (95% CI: 0.76-0.93), which reached an AUC of 0.75 (95% CI: 0.66-0.85) in external validation. The model's predictions were associated with early recurrence and progression-free survival in HCC patients. CONCLUSIONS: The clinical-radiomics model offers a non-invasive approach to discern VM-HCC and predict HCC patients' prognosis preoperatively, which could offer clinicians valuable insights during the decision-making phase.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37873521

RESUMO

Background: Histological grade is an important prognostic factor for patients with breast cancer and can affect clinical decision-making. From a clinical perspective, developing an efficient and non-invasive method for evaluating histological grading is desirable, facilitating improved clinical decision-making by physicians. This study aimed to develop an integrated model based on radiomics and clinical imaging features for preoperative prediction of histological grade invasive breast cancer. Methods: In this retrospective study, we recruited 211 patients with invasive breast cancer and randomly assigned them to either a training group (n=147) or a validation group (n=64) with a 7:3 ratio. Patients were classified as having low-grade tumors, which included grade I and II tumors, or high-grade tumors, which included grade III tumors. Three models were constructed based on basic clinical features, radiomics features, and the sum of the two. To assess diagnostic performance of the radiomics models, we employed measures such as receiver operating characteristic (ROC) curve, decision curve analysis (DCA), accuracy, sensitivity, and specificity, and the predictive performance of the three models was compared using the DeLong test and net reclassification improvement (NRI). Results: The area under the curve (AUC) of the clinical model, radiomics model, and comprehensive model was 0.682, 0.833, and 0.882 in the training set and 0.741, 0.751, and 0.836 in the validation set, respectively. NRI analysis confirmed that the combined model was better than the other two models in predicting the histological grade of breast cancer (NRI=21.4% in the testing cohort). Conclusion: Compared with the other models, the comprehensive model based on the combination of basic clinical features and radiomics features exhibits more significant potential for predicting histological grade and can better assist clinicians in optimal decision-making.

6.
Abdom Radiol (NY) ; 48(2): 554-566, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385192

RESUMO

PURPOSE: This study aimed to analyze imaging features based on preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the identification of vessels encapsulating tumor clusters (VETC)-microvascular invasion (MVI) in hepatocellular carcinoma (HCC), VM-HCC pattern. METHODS: Patients who underwent hepatectomy and preoperative DCE-MRI between January 2015 and March 2021 were retrospectively analyzed. Clinical and imaging features related to VM-HCC (VETC + /MVI-, VETC-/MVI +, VETC + /MVI +) and Non-VM-HCC (VETC-/MVI-) were determined by multivariable logistic regression analyses. Early and overall recurrence were determined using the Kaplan-Meier survival curve. Indicators of early and overall recurrence were identified using the Cox proportional hazard regression model. RESULTS: In total, 221 patients (177 men, 44 women; median age, 60 years; interquartile range, 52-66 years) were evaluated. The multivariable logistic regression analyses revealed fetoprotein > 400 ng/mL (odds ratio [OR] = 2.17, 95% confidence interval [CI] 1.07, 4.41, p = 0.033), intratumor vascularity (OR 2.15, 95% CI 1.07, 4.31, p = 0.031), and enhancement pattern (OR 2.71, 95% CI 1.17, 6.03, p = 0.019) as independent predictors of VM-HCC. In Kaplan-Meier survival analysis, intratumor vascularity was associated with early and overall recurrence (p < 0.05). CONCLUSION: Based on DCE-MRI, intratumor vascularity can be used to characterize VM-HCC and is of prognostic significance for recurrence in patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Vasculares , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Estudos Retrospectivos , Invasividade Neoplásica/patologia , Imageamento por Ressonância Magnética/métodos
7.
Abdom Radiol (NY) ; 47(9): 3308-3317, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35778569

RESUMO

PURPOSE: Adrenal incidentalomas are common lesions found on abdominal imaging, most of which are lipid-rich adrenal adenomas. Imaging diagnoses differentiating lipid-poor adrenal adenomas (LPA) from non-adenomas (NA) are presently challenging to perform. The aim of the study was to investigate the diagnostic performance of the relative enhancement ratio parameter in identifying LPA from NA. METHODS: We retrospectively evaluated consecutively presenting patients with lipid-poor adrenal lesions (January 2015 to August 2021). Lesions were divided into LPA and NA (including hyperenhancing and hypoenhancing NA). Kruskal-Wallis and Bonferroni tests were used to determine the differences in feature parameters between these three groups. Receiver operating characteristic curve analysis was performed to determine the sensitivity for diagnosing LPA and NA at 95% specificity; the parameters were compared using the McNemar test. RESULTS: A total of 253 patients (mean age, 55 ± 12 years; 135 men), 121 with LPA and 132 with NA, were analyzed herein. The sensitivity (achieved at 95% specificity) of the relative enhancement ratio was higher than that of unenhanced attenuation in differentiating LPA from NA (60% vs. 52%, p = 0.064). The relative enhancement ratio yielded a higher sensitivity than unenhanced attenuation (79% vs. 59%, p < 0.001) in differentiating LPA from hypoenhancing NA, and a lower sensitivity (26% vs. 69%, p < 0.001) in differentiating LPA from hyperenhancing NA. CONCLUSION: The relative enhancement ratio showed better diagnostic performance than unenhanced attenuation in differentiating LPA from hypoenhancing NA, while simultaneously showing poor diagnostic performance in identifying LPA from all NA.


Assuntos
Adenoma , Neoplasias das Glândulas Suprarrenais , Adenoma Adrenocortical , Adenoma/patologia , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Neoplasias das Glândulas Suprarrenais/patologia , Adenoma Adrenocortical/patologia , Adulto , Idoso , Diagnóstico Diferencial , Humanos , Lipídeos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
8.
Front Oncol ; 12: 902991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912200

RESUMO

Background: There remains a demand for a practical method of identifying lipid-poor adrenal lesions. Purpose: To explore the predictive value of computed tomography (CT) features combined with demographic characteristics for lipid-poor adrenal adenomas and nonadenomas. Materials and Methods: We retrospectively recruited patients with lipid-poor adrenal lesions between January 2015 and August 2021 from two independent institutions as follows: Institution 1 for the training set and the internal validation set and Institution 2 for the external validation set. Two radiologists reviewed CT images for the three sets. We performed a least absolute shrinkage and selection operator (LASSO) algorithm to select variables; subsequently, multivariate analysis was used to develop a generalized linear model. The probability threshold of the model was set to 0.5 in the external validation set. We calculated the sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC) for the model and radiologists. The model was validated and tested in the internal validation and external validation sets; moreover, the accuracy between the model and both radiologists were compared using the McNemar test in the external validation set. Results: In total, 253 patients (median age, 55 years [interquartile range, 47-64 years]; 135 men) with 121 lipid-poor adrenal adenomas and 132 nonadenomas were included in Institution 1, whereas another 55 patients were included in Institution 2. The multivariable analysis showed that age, male, lesion size, necrosis, unenhanced attenuation, and portal venous phase attenuation were independently associated with adrenal adenomas. The clinical-image model showed AUCs of 0.96 (95% confidence interval [CI]: 0.91, 0.98), 0.93 (95% CI: 0.84, 0.97), and 0.86 (95% CI: 0.74, 0.94) in the training set, internal validation set, and external validation set, respectively. In the external validation set, the model showed a significantly and non-significantly higher accuracy than reader 1 (84% vs. 65%, P = 0.031) and reader 2 (84% vs. 69%, P = 0.057), respectively. Conclusions: Our clinical-image model displayed good utility in differentiating lipid-poor adrenal adenomas. Further, it showed better diagnostic ability than experienced radiologists in the external validation set.

9.
Front Oncol ; 12: 888778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574405

RESUMO

Background: It is difficult for radiologists to differentiate adrenal lipid-poor adenomas from non-adenomas; nevertheless, this differentiation is important as the clinical interventions required are different for adrenal lipid-poor adenomas and non-adenomas. Purpose: To develop an unenhanced computed tomography (CT)-based radiomics model for identifying adrenal lipid-poor adenomas to assist in clinical decision-making. Materials and methods: Patients with adrenal lesions who underwent CT between January 2015 and August 2021 were retrospectively recruited from two independent institutions. Patients from institution 1 were randomly divided into training and test sets, while those from institution 2 were used as the external validation set. The unenhanced attenuation and tumor diameter were measured to build a conventional model. Radiomics features were extracted from unenhanced CT images, and selected features were used to build a radiomics model. A nomogram model combining the conventional and radiomic features was also constructed. All the models were developed in the training set and validated in the test and external validation sets. The diagnostic performance of the models for identifying adrenal lipid-poor adenomas was compared. Results: A total of 292 patients with 141 adrenal lipid-poor adenomas and 151 non-adenomas were analyzed. Patients with adrenal lipid-poor adenomas tend to have lower unenhanced attenuation and smoother image textures. In the training set, the areas under the curve of the conventional, radiomic, and nomogram models were 0.94, 0.93, and 0.96, respectively. There was no difference in diagnostic performance between the conventional and nomogram models in all datasets (all p < 0.05). Conclusions: Our unenhanced CT-based nomogram model could effectively distinguish adrenal lipid-poor adenomas. The diagnostic power of conventional unenhanced CT imaging features may be underestimated, and further exploration is worthy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA