Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Angew Chem Int Ed Engl ; 63(20): e202400129, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38409630

RESUMO

Probing biomolecular interactions at cellular interfaces is crucial for understanding and interfering with life processes. Although affinity binders with site specificity for membrane proteins are unparalleled molecular tools, a high demand remains for novel multi-functional ligands. In this study, a synthetic peptide (APQQ) with tight and specific binding to the untargeted extracellular loop of CD81 evolved from a genetically encoded peptide pool. With tailored affinity, APQQ flexibly accesses, site-specifically binds, and forms a complex with CD81, enabling in-situ tracking of the dynamics and activity of this protein in living cells, which has rarely been explored because of the lack of ligands. Furthermore, APQQ triggers the relocalization of CD81 from diffuse to densely clustered at cell junctions and modulates the interplay of membrane proteins at cellular interfaces. Motivated by these, efficient suppression of cancer cell migration, and inhibition of breast cancer metastasis were achieved in vivo.


Assuntos
Peptídeos , Tetraspanina 28 , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Tetraspanina 28/metabolismo , Tetraspanina 28/química , Metástase Neoplásica , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo
2.
J Am Chem Soc ; 145(5): 2822-2829, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705469

RESUMO

Dynamic foldamers are synthetic folded molecules which can change their conformation in response to an external stimulus and are currently at the forefront of foldamer chemistry. However, constitutionally dynamic foldamers, which can change not only their conformation but also their molecular constitution in response to their environment, are without precedent. We now report a size- and shape-switching small dynamic covalent foldamer network which responds to changes in pH. Specifically, acidic conditions direct the oligomerization of a dipeptide-based building block into a 16-subunit macrocycle with well-defined conformation and with high selectivity. At higher pH the same building block yields another cyclic foldamer with a smaller ring size (9mer). The two foldamers readily and repeatedly interconvert upon adjustment of the pH of the solution. We have previously shown that addition of a template can direct oligomerization of the same building block to yet other rings sizes (including a 12mer and a 13mer, accompanied by a minor amount of 14mer). This brings the total number of discrete foldamers that can be accessed from a single building block to five. For a single building block system to exhibit such highly diverse structure space is unique and sets this system of foldamers apart from proteins. Furthermore, the emergence of constitutional dynamicity opens up new avenues to foldamers with adaptive behavior.

3.
Anal Bioanal Chem ; 415(18): 4079-4092, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37233765

RESUMO

Peptide-derived metal-organic frameworks (PMOFs) have emerged as a class of biomimetic materials with attractive performances in analytical and bioanalytical chemistry. The incorporation of biomolecule peptides gives the frameworks conformational flexibility, guest adaptability, built-in chirality, and molecular recognition ability, which greatly accelerate the applications of PMOFs in enantiomeric separation, affinity separation, and the enrichment of bioactive species from complicated samples. This review focuses on the recent advances in the engineering and applications of PMOFs in selective separation. The unique biomimetic size-, enantio-, and affinity-selective performances for separation are discussed along with the chemical structures and functions of MOFs and peptides. Updates of the applications of PMOFs in adaptive separation of small molecules, chiral separation of drug molecules, and affinity isolation of bioactive species are summarized. Finally, the promising future and remaining challenges of PMOFs for selective separation of complex biosamples are discussed.


Assuntos
Biomimética , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estereoisomerismo
4.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674800

RESUMO

Inhibitors blocking the PD-1/PD-L1 immune checkpoint demonstrate impressive anti-tumor immunity, and small molecule inhibitors disclosed by the Bristol-Myers Squibb (BMS) company have become a hot topic. In this work, by modifying the carbonyl group of BMS-202 into a hydroxyl group to achieve two enantiomers (MS and MR) with a chiral center, we found that this is an effective way to regulate its hydrophobicity and thus to reduce the negative effect of polar solvation free energy, which enhances the stability of PD-L1 dimer/inhibitor complexes. Moreover, we studied the binding modes of BMS-200 and BMS-202-related small molecule inhibitors by molecular dynamics simulation to explore their inhibitory mechanism targeting PD-L1 dimerization. The results showed that the size exclusion effect of the inhibitors triggered the rearrangement of the residue ATyr56, leading to the formation of an axisymmetric tunnel-shaped pocket, which is an important structural basis for improving the binding affinity of symmetric inhibitors with PD-L1. Furthermore, after inhibitor dissociation, the conformation of ATyr123 and BMet115 rearranged, which blocked the entrance of the binding pocket, while the reverse rearrangements of the same residues occurred when the PD-L1 monomer was complexed with the inhibitors, preparing PD-L1 for dimerization. Overall, this study casts a new light on the inhibitory mechanism of BMS inhibitors targeting PD-L1 dimerization and provides an idea for designing novel small molecule inhibitors for future cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Simulação de Dinâmica Molecular , Dimerização , Antígeno B7-H1/metabolismo , Simulação de Acoplamento Molecular
5.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674929

RESUMO

Using small molecules to inhibit the PD-1/PD-L1 pathway is an important approach in cancer immunotherapy. Natural compounds such as capsaicin, zucapsaicin, 6-gingerol and curcumin have been proposed to have anticancer immunologic functions by downregulating the PD-L1 expression. PD-L1 dimerization promoted by small molecules was recently reported to be a potential mechanism to inhibit the PD-1/PD-L1 pathway. To clarify the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and molecular dynamics simulations were performed. The results evidenced that these compounds could inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. Binding free energy calculations showed that capsaicin, zucapsaicin, 6-gingerol and curcumin have strong binding ability with the PD-L1 dimer, where the affinities of them follow the trend of zucapsaicin > capsaicin > 6-gingerol ≈ curcumin. Analysis by residue energy decomposition, contact numbers and nonbonded interactions revealed that these compounds have a tight interaction with the C-sheet, F-sheet and G-sheet fragments of the PD-L1 dimer, which were also involved in the interactions with PD-1. Moreover, non-polar interactions between these compounds and the key residues Ile54, Tyr56, Met115 and Ala121 play a key role in stabilizing the protein−ligand complexes in solution, in which the 4'-hydroxy-3'-methoxyphenyl group and the carbonyl group of zucapsaicin, capsaicin, 6-ginger and curcumin were significant for the complexation of small molecules with the PD-L1 dimer. The conformational variations of these complexes were further analyzed by free energy landscape (FEL) and principal component analysis (PCA) and showed that these small molecules could make the structure of dimers more stable. This work provides a mechanism insight for food-derived small molecules blocking the PD-1/PD-L1 pathway via directly targeting the PD-L1 dimerization and offers theoretical guidance to discover more effective small molecular drugs in cancer immunotherapy.


Assuntos
Curcumina , Neoplasias , Humanos , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Dimerização , Antígeno B7-H1/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias/tratamento farmacológico , Imunoterapia
6.
Ecotoxicol Environ Saf ; 239: 113623, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567931

RESUMO

Bisphenol A (BPA) is an environmental endocrine disruptor. Recent studies have shown an association between decreased spermatogenesis and gut microbiota alteration. However, the potential associations and mechanisms of BPA exposure on spermatogenesis, hormone production, and gut microbiota remain unknown. This study aims to investigate BPA-induced male reproductive toxicity and the potential link with gut microbiota dysbiosis. Male Sprague Dawley rats were exposed to BPA at different doses by oral gavage for thirty consecutive days. The extent of testicular damage was evaluated by basic parameters of body weight and hematoxylin-eosin (H&E) staining. Next, we determined the mRNA levels and protein levels of apoptosis, histone-related factors, and mammalian target of rapamycin (mTOR) pathway in testes. Finally, 16 S rDNA sequencing was used to analyze gut microbiota composition after BPA exposure. BPA exposure damaged testicular histology, significantly decreased sperm count, and increased sperm abnormalities. In addition, BPA exposure caused oxidative stress and cell apoptosis in testes. The levels of histone (H2A, H3) were significantly increased, while ubiquitin histone H2A (ub-H2A) and ubiquitin histone H2B (ub-H2B) were markedly reduced. Furthermore, BPA activated the PI3K and AKT expression, but the protein expressions of mTOR and 4EBP1 in testes were inhibited significantly. Additionally, the relative abundance of class Gammaproteobacteria, and order Betaproteobacteriales was significantly higher when treated with a high dose of BPA compared to the control group, which was negatively correlated with testosterone level. This study highlights the relationship between BPA-induced reproductive toxicity and gut microbiota disorder and provides new insights into the prevention and treatment of BPA-induced reproductive damage.


Assuntos
Compostos Benzidrílicos , Microbioma Gastrointestinal , Histonas , Animais , Compostos Benzidrílicos/toxicidade , Disbiose/induzido quimicamente , Disbiose/metabolismo , Histonas/metabolismo , Masculino , Fenóis , Ratos , Ratos Sprague-Dawley , Sêmen , Serina-Treonina Quinases TOR/metabolismo , Testículo , Ubiquitinas/metabolismo
7.
Mikrochim Acta ; 189(7): 246, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674804

RESUMO

The development of hydrazone bond-oriented epitope imprinting strategy is reported to synthesize the polymeric binders for the selective recognition of a protein-ß2-microglobulin through either its N- or C-terminal epitope. The dynamic reversibility of hydrazone bond facilitated not only the oriented assembly of the template peptide hydrazides onto the substrate but also the efficient removal of them from the imprinted cavities. The well-defined surface imprinted layer was successfully constructed through the precise control over the polymerization of silicate esters. Binding performance of the C-terminal peptide imprinted nanocomposite was significantly improved after tuning the non-covalent interactions using the sequence-matching aromatic co-monomers. The dissociation constant (Kd) between the optimized nanocomposite and epitope peptide was 0.5 µmol L-1. The nanomaterial was utilized for the selective extraction and determination of ß2-microglobulin from human urine by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and HPLC-UV with satisfied recoveries of 93.1-112.3% in a concentration range 1.0-50.0 µg⋅mL-1.


Assuntos
Impressão Molecular , Nanocompostos , Epitopos/química , Humanos , Hidrazonas , Impressão Molecular/métodos , Nanocompostos/química , Peptídeos
8.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887390

RESUMO

Bisphenol A (BPA) is a globally utilized industrial chemical and is commonly used as a monomer of polycarbonate plastics and epoxy resins. Recent research reveals that BPA could cause potential adverse biological effects and liver dysfunction. However, the underlying mechanisms of BPA-induced hepatoxicity and gut dysbiosis remain unclear and deserve further study. In this study, male Sprague Dawley rats were exposed to different doses (0, 30, 90, and 270 mg/kg bw) of BPA by gavage for 30 days. The results showed that the high dose of BPA decreased superoxide dismutase (SOD), glutathione (GSH), and increased malondialdehyde (MDA) levels. Moreover, a high dose of BPA caused a significant increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C), while high-density lipoprotein cholesterol (HDL-C) was significantly decreased in BPA-treated rats. The gene expression of PGC-1α and Nrf1 were decreased in the liver of high doses of BPA-administrated rats, as well as the protein levels of SIRT1, PGC-1α, Nrf2, and TFAM. However, the protein expression of IL-1ß was significantly increased in BPA-treated rats. In addition, BPA weakened the mitochondrial function of hepatocytes and promoted cell apoptosis in the liver by up-regulating the protein levels of Bax, cleaved-Caspase3, and cleaved-PARP1 while down-regulating the Bcl-2 in the liver. More importantly, a high dose of BPA caused a dramatic change in microbiota structure, as characterized at the genus level by increasing the ratio of Firmicutes to Bacteroidetes (F/B), and the relative abundance of Proteobacteria in feces, while decreasing the relative abundance of Prevotella_9 and Ruminococcaceae_UCG-014, which is positively correlated with the content of short-chain fatty acids (SCFAs). In summary, our data indicated that BPA exposure caused hepatoxicity through apoptosis and the SIRT1/PGC-1α pathway. BPA-induced intestinal flora and SCFA changes may be associated with hepatic damage. The results of this study provide a new sight for the understanding of BPA-induced hepatoxicity.


Assuntos
Microbioma Gastrointestinal , Sirtuína 1 , Animais , Compostos Benzidrílicos/farmacologia , Colesterol/metabolismo , Fígado/metabolismo , Masculino , Estresse Oxidativo , Fenóis , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Sirtuína 1/metabolismo
9.
Angew Chem Int Ed Engl ; 61(36): e202208378, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811386

RESUMO

We herein report a phosphoric-acid-substituted tetraphenylethene (T-P) capable of adapting its geometric configuration and biological activity to the microenvironment upon light irradiation for apoptosis modulation. Different from most ultraviolet-responsive isomerization, T-P undergoes cis-trans isomerization under visible light irradiation, which is biocompatible and thus photo-modulation is possible in living biosystems. By using alkaline phosphatase (ALP) and albumin as dual targets, T-P isomers display different protein binding selectivity, cancer-cell internalization efficiency and apoptosis-inducing ability. The proapoptotic activity was found to be kinetically controlled by the enzymatic reaction with ALP and regulated by co-existing albumin. Motivated by these findings, two-way modulation of proapoptotic effect and on-demand boosting anticancer efficacy were realized in vitro and in vivo using light and endogenous proteins as multiple non-invasive switching stimuli.


Assuntos
Neoplasias , Albuminas , Humanos , Isomerismo , Luz , Proteínas , Microambiente Tumoral
10.
Anal Chem ; 93(4): 2045-2052, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33326221

RESUMO

Apoptosis plays an essential role in a multicellular organism's lifecycle. Developing technologies for selectively monitoring apoptotic processes can be useful not only in the evaluation of disease progression, but also in the assessment of their therapeutic intervention. However, quantitative imaging of cell apoptosis is still a challenge. In this work, we reported a cell-permeable peptide probe with a ratiometric fluorescence response specifically toward caspase-3, a key enzyme for the execution of apoptosis. This probe Ac-Tat-DEVD-CV consisted of a caspase-3 recognition sequence Asp-Glu-Val-Asp (DEVD), a cell-penetrating peptide Tat (RKKRRORRR), and a long wavelength fluorophore, cresyl violet (CV). Upon selective hydrolyzation by caspase-3, the probe released CV and displayed a ratiometric change in fluorescence. Facilitated by the cell-penetrating peptide, this probe can easily internalize into cells. The ratiometric response property bestowed the probe with advantages in the real-time quantification of caspase-3 activity, thus estimating the apoptotic stages in living cells. This method could offer opportunities to evaluate apoptosis-related disease progression and therapeutic monitoring.


Assuntos
Caspase 3/química , Caspase 3/metabolismo , Corantes Fluorescentes/química , Imagem Molecular/métodos , Imagem Óptica/métodos , Peptídeos/química , Células HeLa , Humanos
11.
Anal Chem ; 93(28): 9778-9787, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34228920

RESUMO

Broad-spectrum detection and long-term monitoring of circulating tumor cells (CTCs) remain challenging due to the extreme rarity, heterogeneity, and dynamic nature of CTCs. Herein, a dual-affinity nanostructured platform was developed for capturing different subpopulations of CTCs and monitoring CTCs during treatment. Stepwise assembly of fibrous scaffolds, a ligand-exchangeable spacer, and a lysosomal protein transmembrane 4 ß (LAPTM4B)-targeting peptide creates biomimetic, stimuli-responsive, and multivalent-binding nanointerfaces, which enable harvest of CTCs directly from whole blood with high yield, purity, and viability. The stable overexpression of the target LAPTM4B protein in CTCs and the enhanced peptide-protein binding facilitate the capture of rare CTCs in patients at an early stage, detection of both epithelial-positive and nonepithelial CTCs, and tracking of therapeutic responses. The reversible release of CTCs allows downstream molecular analysis and identification of specific liver cancer genes. The consistency of the information with clinical diagnosis presents the prospect of this platform for early diagnosis, metastasis prediction, and prognosis assessment.


Assuntos
Células Neoplásicas Circulantes , Biomimética , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/genética , Humanos , Proteínas de Membrana , Proteínas Oncogênicas , Peptídeos
12.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681584

RESUMO

In cancer immunotherapy, an emerging approach is to block the interactions of programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) using small-molecule inhibitors. The food-derived polyphenols curcumin (CC), resveratrol (RSV) and epigallocatechin gallate (EGCG) have anticancer immunologic functions, which, recently, have been proposed to act via the downregulation of PD-L1 expression. However, it remains unclear whether they can directly target PD-L1 dimerization and, thus, interrupt the PD-1/PD-L1 pathway. To elucidate the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and nanosecond molecular dynamics simulations were performed. Binding free energy calculations show that the affinities of CC, RSV and EGCG to the PD-L1 dimer follow a trend of CC > RSV > EGCG. Hence, CC is the most effective inhibitor of the PD-1/PD-L1 pathway. Analysis on contact numbers, nonbonded interactions and residue energy decomposition indicate that such compounds mainly interact with the C-, F- and G-sheet fragments of the PD-L1 dimer, which are involved in interactions with PD-1. More importantly, nonpolar interactions between these compounds and the key residues Ile54, Tyr56, Met115, Ala121 and Tyr123 play a dominant role in binding. Free energy landscape and secondary structure analyses further demonstrate that such compounds can stably interact with the binding domain of the PD-L1 dimer. The results provide evidence that CC, RSV and EGCG can inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. This provides a novel approach to discovering food-derived small-molecule inhibitors of the PD-1/PD-L1 pathway with potential applications in cancer immunotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Simulação de Dinâmica Molecular , Polifenóis/metabolismo , Antígeno B7-H1/química , Sítios de Ligação , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , Dimerização , Humanos , Simulação de Acoplamento Molecular , Polifenóis/química , Ligação Proteica , Estrutura Secundária de Proteína , Resveratrol/química , Resveratrol/metabolismo , Termodinâmica
13.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946261

RESUMO

Programmed cell death-1 (PD-1), which is a molecule involved in the inhibitory signal in the immune system and is important due to blocking of the interactions between PD-1 and programmed cell death ligand-1 (PD-L1), has emerged as a promising immunotherapy for treating cancer. In this work, molecular dynamics simulations were performed on complex systems consisting of the PD-L1 dimer with (S)-BMS-200, (R)-BMS-200 and (MOD)-BMS-200 (i.e., S, R and MOD systems) to systematically evaluate the inhibitory mechanism of BMS-200-related small-molecule inhibitors in detail. Among them, (MOD)-BMS-200 was modified from the original (S)-BMS-200 by replacing the hydroxyl group with a carbonyl to remove its chirality. Binding free energy analysis indicates that BMS-200-related inhibitors can promote the dimerization of PD-L1. Meanwhile, no significant differences were observed between the S and MOD systems, though the R system exhibited a slightly higher energy. Residue energy decomposition, nonbonded interaction, and contact number analyses show that the inhibitors mainly bind with the C, F and G regions of the PD-L1 dimer, while nonpolar interactions of key residues Ile54, Tyr56, Met115, Ala121 and Tyr123 on both PD-L1 monomers are the dominant binding-related stability factors. Furthermore, compared with (S)-BMS-200, (R)-BMS-200 is more likely to form hydrogen bonds with charged residues. Finally, free energy landscape and protein-protein interaction analyses show that the key residues of the PD-L1 dimer undergo remarkable conformational changes induced by (S)-BMS-200, which boosts its intimate interactions. This systematic investigation provides a comprehensive molecular insight into the ligand recognition process, which will benefit the design of new small-molecule inhibitors targeting PD-L1 for use in anticancer therapy.


Assuntos
Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Multimerização Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Termodinâmica
14.
Angew Chem Int Ed Engl ; 59(25): 10042-10051, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32118352

RESUMO

Tuning autophagy in a controlled manner could facilitate cancer therapy but it remains challenging. Pyridinium-substituted tetraphenylethylene salts (PTPE 1-3), able to target mitochondria and disrupt autophagy after forming complexes with albumin, are reported. Mitochondrion affinity and autophagy-inducing activity are improved by prolonging the length of alkyl chains in PTPE 1-3. PTPE 1-3 demonstrate proautophagic activity and a mitophagy blockage effect. Failure of autophagosome-lysosome fusion in downstream autophagy flux results in cancer cell death. Moreover, fast formation of complexes of PTPE 1-3 with albumin in blood can facilitate biomimetic delivery and deep tumor penetration. Efficient tumor accumulation and effective tumor suppression are successfully demonstrated with in vitro and in vivo studies. PTPE 1-3 salts exhibit dual functionality: they target and image mitochondria because of aggregation-induced emission effects and they are promising for cancer therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Alquilação , Antineoplásicos/uso terapêutico , Fusão Celular , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Compostos de Piridínio/uso terapêutico , Estilbenos/uso terapêutico
15.
Anal Chem ; 91(3): 1880-1886, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30525475

RESUMO

Nonselectivity and drug resistance are two major obstacles for cancer treatment. Although great advances have been made toward cell targeting or discovering novel delivery pathways, it is still desirable to simultaneously overcome the two hurdles for successful cancer theranostics. Herein, a peptide-guided system was tailored by modular integration of a cancer biomarker-specific peptide, a mitochondria-targeting motif and a cell toxin. Cell imaging analysis revealed that the dual-targeting peptide-drug conjugate (PDC) features in cancer cell-specific uptake, strong drug retention, and programmable intracellular translocation. Facilitated by in situ bond cleavage, PDC successfully diverted the toxic effect of nucleus-localized drug to mitochondria. Mechanism investigation demonstrated that the cell damage pathway of the drug was also transformed, which is beneficial to reverse drug resistance in cancer cells. The effectiveness of PDC for cancer therapy was further demonstrated by in vivo imaging and tumor inhibition assay. With intravenous injection, targeted accumulation in the tumor site, and tumor suppressing efficacy without side effects exhibit its perspective for cancer treatment. The dual-targeting peptide-drug conjugate featuring tailored transportation route highlights a promising and generally applicable way to enhance the overall therapeutic index of conventional anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Hidrazinas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antineoplásicos/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Feminino , Células Hep G2 , Humanos , Hidrazinas/química , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas Experimentais/diagnóstico por imagem , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Imagem Óptica
16.
Anal Chem ; 90(16): 9708-9715, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30021438

RESUMO

Peptides with modular structure provide a tailorable platform for constructing responsive supramolecular assemblies, which are attractive as functional biomaterials and smart sensors. In this work, the feasibility of regulating small peptides assembly with molecular design and metal ion recognition was demonstrated. Tripeptides were designed and found to have diverse response and self-assembly behavior to Hg2+. The incorporation of an aggregation-induced emission fluorophore TPE enabled the visualization of Hg2+ recognition and the assembly phenomenon. A structural analogue (Pep2) to γ-glutathione was identified with high specificity and nanomolar response to Hg2+ both in buffer solution and living cells. Driven by the coordination force and noncovalent intramolecular stacking, assembling of twisted nanofibers from Pep2-TPE and Hg2+ were observed. Benefiting from its biocompatibility, fast and switchable fluorescence response, Pep2-TPE was applied for imaging and monitoring Hg2+ distribution in living cells and zebrafish. With good permeability to plasma membrane and tissues, Pep2-TPE indicated the preferential distribution of Hg2+ in cell nucleoli and brain of zebrafish, which is related with the deleterious effect of inorganic mercury in living biosystems.


Assuntos
Complexos de Coordenação/química , Mercúrio/análise , Oligopeptídeos/química , Animais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células HeLa , Humanos , Limite de Detecção , Microscopia de Fluorescência/métodos , Nanofibras/química , Oligopeptídeos/síntese química , Multimerização Proteica/efeitos dos fármacos , Estilbenos/síntese química , Estilbenos/química , Peixe-Zebra
17.
J Sep Sci ; 40(10): 2269-2277, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28371546

RESUMO

Surface enrofloxacin-imprinted magnetic nanoparticles were prepared for the selective recognition and fast separation of fluoroquinolones in human serum by surface-initiated reversible addition fragmentation chain transfer polymerization. The surface morphology and imprinted behavior were investigated and optimized. The living/controlled nature of reversible addition-fragmentation chain transfer polymerization reaction allowed the successful construction of well-defined imprinted polymer layer outside the Fe3 O4 core. Such molecularly imprinted polymers exhibited superparamagnetic properties and specific recognition toward fluoroquinolones. Combined with reversed-phase high-performance liquid chromatography, the prepared molecularly imprinted polymers were used for the selective enrichment and analysis of fluoroquinolones in human serum samples. The recoveries of four fluoroquinolones were 86.8-95.3% with relative standard deviations of 2.0-6.8% (n = 3). Such magnetic molecularly imprinted polymers have great prospects in the separation and enrichment of trace analysts in complex biological samples.


Assuntos
Fluoroquinolonas/sangue , Nanopartículas de Magnetita , Impressão Molecular , Humanos , Magnetismo , Polímeros
18.
Anal Chem ; 88(12): 6374-81, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27232658

RESUMO

Smart and versatile nanostructures have demonstrated their effectiveness for biomolecule analysis and show great potential in digging insights into the structural/functional relationships. Herein, a nanoscale molecular self-assembly was constructed for probing the site-specific recognition and conformational changes of human serum albumin (HSA) with tunable size and emission. A tetraphenylethylene derivative TPE-red-COOH was used as the building block for tailoring fluorescence-silent nanoparticles. The highly specific and sensitive response to HSA was witnessed by the fast turn-on of the red fluorescence and simultaneous disassembly of the nanostructures, whereas various endogenous biomolecules cannot induce such response. The mechanism investigation indicates that the combination of multiple noncovalent interactions is the driving force for disassembling and trapping TPE-red-COOH into HSA. The resultant restriction of intramolecular rotation of TPE-red-COOH in the hydrophobic cavity of HSA induces the significant red emission. By using the fluorescence activatable nanosensor as the structural indicator, the stepwise conformational transitions of HSA during denaturing and the partial refolding of subdomain IIA of HSA were facilely visualized. Benefiting from its activatable signaling, sensitivity, and simplicity, such molecular assembly provides a kind of soft nanomaterial for site-specific biomolecule probing and conformational transition detection concerning their structure, function, and biomedical characteristics.


Assuntos
Corantes Fluorescentes/química , Albumina Sérica Humana/química , Estilbenos/química , Dicroísmo Circular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Nanoestruturas/química , Conformação Proteica , Desnaturação Proteica , Domínios Proteicos , Redobramento de Proteína , Espectrometria de Fluorescência/métodos
19.
Anal Chem ; 87(3): 1470-4, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25600003

RESUMO

Herein, a new fluorescence turn-on chemosensor 2-(4-(1,2,2-triphenylvinyl)phenoxy)acetic acid (TPE-COOH) specific for Al(3+) was presented by combining the aggregation-induced-emission (AIE) effect of tertaphenylethylene and the complexation capability of carboxyl. The introduction of carboxylic group provides the probe with good water-solubility which is important for analyzing biological samples. The recognition toward Al(3+) induced the molecular aggregation and activated the blue fluorescence of the TPE core. The high selectivity of the probe was demonstrated by discriminating Al(3+) over a variety of metal ions in a complex mixture. A detection limit down to 21.6 nM was determined for Al(3+) quantitation. Furthermore, benefiting from its good water solubility and biocompatibility, imaging detection and real-time monitoring of Al(3+) in living HeLa cells were successfully achieved. The AIE effect of the probe enables high signal-to-noise ratio for bioimaging even without multiple washing steps. These superiorities make this probe a great potential for the functional study and analysis of Al(3+) in complex biosystems.


Assuntos
Acetatos/química , Alumínio/análise , Imagem Óptica , Estilbenos/química , Cátions/análise , Fluorescência , Células HeLa , Humanos , Limite de Detecção
20.
Front Chem ; 12: 1423666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38867762

RESUMO

Food safety is the basis for ensuring human survival and development. The threat of heavy metal ions to food safety has become a social concern with the rapid growth of the economy and the accompanying environmental pollution. Some heavy metal ions are highly toxic even at trace levels and pose significant health risks to humans. Therefore, ultrasensitive detection of heavy metal ions in food samples is important. In this mini-review, recent advances in the analytical methods based on nanomaterials for detecting trace heavy metal ions in food samples are summarized in three categories: electrochemical, colorimetric, and fluorescent methods. We present the features and sensing mechanisms of these three methods, along with typical examples to illustrate their application in the detection of heavy metal ions in foods. This mini-review ends with a discussion of current challenges and future prospects of these approaches for sensing heavy metal ions. The review will help readers understand the principles of these methods, thereby promoting the development of new analytical methods for the detection of heavy metal ions in food samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA