Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 14394-14404, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859385

RESUMO

The inter-plane crosstalk and limited axial resolution are two key points that hinder the performance of three-dimensional (3D) holograms. The state-of-the-art methods rely on increasing the orthogonality of the cross-sections of a 3D object at different depths to lower the impact of inter-plane crosstalk. Such strategy either produces unidirectional 3D hologram or induces speckle noise. Recently, learning-based methods provide a new way to solve this problem. However, most related works rely on convolution neural networks and the reconstructed 3D holograms have limited axial resolution and display quality. In this work, we propose a vision transformer (ViT) empowered physics-driven deep neural network which can realize the generation of omnidirectional 3D holograms. Owing to the global attention mechanism of ViT, our 3D CGH has small inter-plane crosstalk and high axial resolution. We believe our work not only promotes high-quality 3D holographic display, but also opens a new avenue for complex inverse design in photonics.

2.
Opt Lett ; 48(11): 3119-3122, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262295

RESUMO

Metasurfaces integrated with waveguides have been recently explored as a means to control the conversion between guided modes and radiation modes for versatile functionalities. However, most efforts have been limited to constructing a single free-space wavefront using guided waves, which hinders the functional diversity and requires a complex configuration. Here, a new, to the best of our knowledge, type of non-uniformly arranged geometric metasurface enabling independent multi-channel wavefront engineering of guided wave radiation is ingeniously proposed. By endowing three structural degrees of freedom into a meta-atom, two mechanisms (the Pancharatnam-Berry phase and the detour phase) of the metasurface are perfectly joined together, giving rise to three phase degrees of freedom to manipulate. Therefore, an on-chip polarization demultiplexed metalens, a wavelength-multiplexed metalens, and RGB-colored holography with an improved information capacity are successively demonstrated. Our results enrich the functionalities of an on-chip metasurface and imply the prospect of advancements in multiplexing optical imaging, augmented reality (AR) holographic displays, and information encryption.

3.
Opt Express ; 30(3): 4312-4326, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209670

RESUMO

Metasurfaces have made great progress in the last decade for generating miniature and integrated optical devices. The optical properties of metasurfaces can be tuned dynamically by integrating with phase-change materials. However, the efficiency of tunable metasurfaces remains a bit low, which is a disadvantage for the realistic applications of metasurfaces. Here, we demonstrate the tunable dielectric metasurfaces by structuring the phase-change material Ge2Sb2Te5. The unit cell of metasurface is composed of several Ge2Sb2Te5 nanopillars with different geometric parameters, and the incident light interacts with different nanopillars at diverse phases of Ge2Sb2Te5, leading to various functions. By elaborately arranging the Ge2Sb2Te5 nanopillars, various tunable optical devices have been realized, including tunable beam steering, reconfigurable metalens and switchable wave plate. The refractive direction, focal length and polarization state can be tuned through the phase transition of Ge2Sb2Te5. The phase-change metasurfaces based on Ge2Sb2Te5 nanostructures could be used in cameras, optical microscopy and adaptive optics.

4.
Opt Lett ; 47(23): 6073-6076, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219175

RESUMO

Metasurfaces have made great progress in the past decade in generating various planar optical devices. However, most metasurfaces exhibit their functions in either reflection mode or transmission mode, with the other mode unutilized. In this work, we demonstrate switchable transmissive and reflective metadevices by combining metasurfaces with vanadium dioxide. The composite metasurface can work as a transmissive metadevice, with one function for vanadium dioxide in the insulating phase, and is changed to a reflective metadevice with another function for vanadium dioxide in the metallic phase. By carefully designing the structures, the metasurface can be switched from a transmissive metalens to a reflective vortex generator, or between a transmissive beam steering and a reflective quarter-wave plate through the phase transition of vanadium dioxide. The switchable transmissive and reflective metadevices have potential applications in imaging, communication, and information processing.

5.
Nano Lett ; 20(9): 6774-6779, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32804512

RESUMO

The optical vortex on a chip is of extreme importance for many applications in nanoscience, and as well-known, the chiral metallic nanostructures like plasmonic vortex lenses (PVLs) can produce a spin-dependent plasmonic vortex (PV) which is governed by plasmonic spin-orbit coupling. The well-established nanophotonic theory and various experimental demonstrations all show a single PV mode in one PVL, when the excitation is fixed. Here, counterintuitively, we report the existence of the nontrivial deuterogenic PVs, besides the one predicted previously. We theoretically reveal a general spin-to-orbit coupling and experimentally demonstrate the surprising existence of multiple PVs in a single PVL even when excited by a fixed circularly polarized vortex beam. This work provides a deeper fundamental understanding of the dynamics and the near-field spin-orbit coupling in nanophotonics, which promises to flexibly manipulate the PV for emerging optical vortex-based nanotechnologies and quantum optical applications on a chip.

6.
Nano Lett ; 18(7): 4584-4589, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29927600

RESUMO

Janus monolayers have long been captivated as a popular notion for breaking in-plane and out-of-plane structural symmetry. Originated from chemistry and materials science, the concept of Janus functions have been recently extended to ultrathin metasurfaces by arranging meta-atoms asymmetrically with respect to the propagation or polarization direction of the incident light. However, such metasurfaces are intrinsically static and the information they carry can be straightforwardly decrypted by scanning the incident light directions and polarization states once the devices are fabricated. In this Letter, we present a dynamic Janus metasurface scheme in the visible spectral region. In each super unit cell, three plasmonic pixels are categorized into two sets. One set contains a magnesium nanorod and a gold nanorod that are orthogonally oriented with respect to each other, working as counter pixels. The other set only contains a magnesium nanorod. The effective pixels on the Janus metasurface can be reversibly regulated by hydrogenation/dehydrogenation of the magnesium nanorods. Such dynamic controllability at visible frequencies allows for flat optical elements with novel functionalities including beam steering, bifocal lensing, holographic encryption, and dual optical function switching.

7.
Opt Express ; 21(3): 3083-90, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481766

RESUMO

In this paper, a novel TiO(2) nanoparticle thin film coated optical fiber Fabry-Perot (F-P) sensor had been developed for refractive index (RI) sensing by monitoring the shifts of the fringe contrast in the reflectance spectra. Using in situ liquid phase deposition approach, the TiO(2) nanoparticle thin film could be formed on the fiber surface in a controlled fashion. The optical properties of as-prepared F-P sensors were investigated both theoretically and experimentally. The results indicated that the RI sensitivity of F-P sensors could be effectively improved after the deposition of nanoparticle thin-films. It was about 69.38 dB/RIU, which was 2.6 times higher than that of uncoated one. The linear RI measurement range was also extended from 1.333~1.457 to 1.333~1.8423. More importantly, its optical properties exhibited the unique temperature-independent performance. Therefore, owing to these special optical properties, the TiO(2) nanoparticle thin film coated F-P sensors have great potentials in medical diagnostics, food quality testing, environmental monitoring, biohazard detection and homeland security, even at elevated temperature.


Assuntos
Interferometria/instrumentação , Membranas Artificiais , Nanopartículas/química , Fibras Ópticas , Refratometria/instrumentação , Titânio/química , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
8.
Adv Mater ; 32(2): e1906352, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31746042

RESUMO

Janus monolayers, a class of two-faced 2D materials, have received significant attention in electronics, due to their unusual conduction properties stemming from their inherent out-of-plane asymmetry. Their photonic counterparts recently allowed for the control of hydrogenation/dehydrogenation processes, yielding drastically different responses for opposite light excitation spins. A passive Janus metasurface composed of cascaded subwavelength anisotropic impedance sheets is demonstrated. By introducing a rotational twist in their geometry, asymmetric transmission with the desired phase function is realized. Their broken out-of-plane symmetry realizes different functions for opposite propagation directions, enabling direction-dependent versatile functionalities. A series of passive Janus metasurfaces that enable functionalities including one-way anomalous refraction, one-way focusing, asymmetric focusing, and direction-controlled holograms are experimentally demonstrated.

9.
Adv Mater ; 32(6): e1903983, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31879999

RESUMO

Cylindrical vector vortex beams, a particular class of higher-order Poincaré sphere beams, are generalized forms of waves carrying orbital angular momentum with inhomogeneous states-of-polarization on their wavefronts. Conventional methods as well as the more recently proposed segmented/interleaved shared-aperture metasurfaces for vortex beam generation are either severely limited by bulky optical setups or by restricted channel capacity with low efficiency and mode number. Here, a noninterleaved vortex multiplexing approach is proposed, which utilizes superimposed scattered waves with opposite spin states emanating from all meta-atoms in a coherent manner, counter-intuitively enabling ultrahigh-capacity, high-efficiency, and flexible generation of massive vortex beams with structured state-of-polarization. A series of exemplary prototypes, implemented by sub-wavelength-thick metasurfaces, are demonstrated experimentally, achieving kaleidoscopic vector vortex beams. This methodology holds great promise for structured wavefront shaping, vortex generation, and high information-capacity planar photonics, which may have a profound impact on transformative technological advances in fields including spin-Hall photonics, optical holography, compressive imaging, electromagnetic communication, and so on.

10.
ACS Nano ; 13(1): 821-829, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30615418

RESUMO

With the recent burgeoning advances in nano-optics, ultracompact, miniaturized photonic devices with high-quality and spectacular functionalities are highly desired. Such devices' design paradigms often call for the solution of a complex inverse nonanalytical/semianalytical problem. However, currently reported strategies dealing with amplitude-controlled meta-optics devices achieved limited functionalities mainly due to restricted search space and demanding computational schemes. Here, we established a segmented hierarchical evolutionary algorithm, aiming to solve large-pixelated, complex inverse meta-optics design and fully demonstrate the targeted performance. This paradigm allows significantly extended search space at a rapid converging speed. As typical complex proof-of-concept examples, large-pixelated meta-holograms are chosen to demonstrate the validity of our design paradigm. An improved fitness function is proposed to reinforce the performance balance among image pixels, so that the image quality is improved and computing speed is further accelerated. Broadband and full-color meta-holograms with high image fidelities using binary amplitude control are demonstrated experimentally. Our work may find important applications in the advanced design of future nanoscale high-quality optical devices.

11.
Nat Commun ; 10(1): 4789, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636259

RESUMO

Metasurfaces as artificially nanostructured interfaces hold significant potential for multi-functionality, which may play a pivotal role in the next-generation compact nano-devices. The majority of multi-tasked metasurfaces encode or encrypt multi-information either into the carefully tailored metasurfaces or in pre-set complex incident beam arrays. Here, we propose and demonstrate a multi-momentum transformation metasurface (i.e., meta-transformer), by fully synergizing intrinsic properties of light, e.g., orbital angular momentum (OAM) and linear momentum (LM), with a fixed phase profile imparted by a metasurface. The OAM meta-transformer reconstructs different topologically charged beams into on-axis distinct patterns in the same plane. The LM meta-transformer converts red, green and blue illuminations to the on-axis images of "R", "G" and "B" as well as vivid color holograms, respectively. Thanks to the infinite states of light-metasurface phase combinations, such ultra-compact meta-transformer has potential in information storage, nanophotonics, optical integration and optical encryption.

12.
ACS Nano ; 12(9): 8847-8854, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30112908

RESUMO

Nanoprint-based color display using either extrinsic structural colors or intrinsic emission colors is a rapidly emerging research field for high-density information storage. Nevertheless, advanced applications, e. g., dynamic full-color display and secure information encryption, call for demanding requirements on in situ color change, nonvacuum operation, prompt response, and favorable reusability. By transplanting the concept of electrical/chemical doping in the semiconductor industry, we demonstrate an in situ reversible color nanoprinting paradigm via photon doping, triggered by the interplay of structural colors and photon emission of lead halide perovskite gratings. It solves the aforementioned challenges at one go. By controlling the pumping light, the synergy between interlaced mechanisms enables color tuning over a large range with a transition time on the nanosecond scale in a nonvacuum environment. Our design presents a promising realization of in situ dynamic color nanoprinting and will empower the advances in structural color and classified nanoprinting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA