RESUMO
This study was undertaken to evaluate the utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry with the Vitek MS Plus system for identifying Mycobacterium abscessus subspecies in order to facilitate more rapid and appropriate therapy. A total of 175 clinical M. abscessus strains were identified by whole-genome sequencing analysis: 139 Mycobacterium abscessus subsp. abscessus and 36 Mycobacterium abscessus subsp. massiliense The research-use-only (RUO) Saramis Knowledge Base database v.4.12 was modified accordingly by adding 40 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massiliense reference spectra to construct subspecies SuperSpectra. A blind test, used to validate the remaining 116 isolates, yielded 99.1% (n = 115) reliability and only 0.9% (n = 1) error for subspecies identification. Among the two subspecies SuperSpectra, two specific peaks were found for M. abscessus subsp. abscessus and four specific peaks were found for M. abscessus subsp. massiliense Our study is the first to report differential peaks 3,354.4 m/z and 6,711.1 m/z, which were specific for M. abscessus subsp. massiliense Our research demonstrates the capacity of the Vitek MS RUO Saramis Knowledge Base database to identify M. abscessus at the subspecies level. Moreover, it validates the potential ease and accuracy with which it can be incorporated into the IVD system for the identification of M. abscessus subspecies.
Assuntos
Técnicas de Tipagem Bacteriana/métodos , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Micobactérias não Tuberculosas/classificação , Micobactérias não Tuberculosas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Bases , DNA Bacteriano/genética , Bases de Dados Factuais , Genoma Bacteriano/genética , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Análise de Sequência de DNARESUMO
Immunity and flowering are energy-consuming processes. However, the mechanism underlying the balance between immunity and flowering remains to be elucidated. Here, we report that the E3 ligase ideal plant architecture 1 interactor 1 (IPI1) controls rice immunity and flowering via two different pathways, one dependent on and another independent of its E3 ligase activity. We found that IPI1, a RING-finger E3 ligase, interacts with another E3 ligase, AvrPiz-t-interacting protein 6 (APIP6), and protects APIP6 from degradation by preventing APIP6's self-ubiquitination. Stabilization of APIP6 by IPI1 requires no IPI1 E3 ligase activity and leads to degradation of APIP6 substrates via the ubiquitin-proteasome system (UPS). Meanwhile, IPI1 directly ubiquitinates OsELF3-1 and OsELF3-2, two homologs of EARLY FLOWERING3 (ELF3), targeting them for degradation via the 26S proteasome. IPI1 knockout plants display early flowering but compromised resistance to rice blast. Thus, IPI1 balances rice immunity and flowering via both E3 ligase-dependent and -independent pathways.
Assuntos
Flores , Oryza , Imunidade Vegetal , Proteínas de Plantas , Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases , Ubiquitinação , Oryza/metabolismo , Oryza/genética , Oryza/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/metabolismo , Flores/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente ModificadasRESUMO
Salt damage is an important abiotic stress affecting the agronomic traits of soybean. Soybeans rapidly sense and transmit adverse signals when salt-damaged, inducing a set of response mechanisms to resist salt stress. AtARA6 encodes a small GTPase, which plays an important role in Arabidopsis vesicle transport and salt tolerance. In this study, we transformed the Arabidopsis gene AtARA6 into the cultivated soybean Shen Nong 9 (SN9). To investigate the salt tolerance pathways affected by AtARA6 in soybean, we performed transcriptome sequencing using transgenic soybean and wild-type (SN9) under salt treatment and water treatment. Our results suggest that AtARA6 is involved in the regulation of soybean SNARE complexes in the vesicle transport pathway, which may directly strengthen salt tolerance. In addition, we comprehensively analyzed the RNA-seq data of transgenic soybean and SN9 under different treatments and obtained 935 DEGs. GO analysis showed that these DEGs were significantly enriched in transcription factor activity, sequence-specific DNA binding, and the inositol catabolic process. Three salt-responsive negative regulator transcription factors, namely MYC2, WRKY6, and WRKY86, were found to be significantly downregulated after salt treatment in transgenic soybeans. Moreover, four genes encoding inositol oxygenase were significantly enriched in the inositol catabolic process pathway, which could improve the salt tolerance of transgenic soybeans by reducing their reactive oxygen species content. These are unique salt tolerance effects produced by transgenic soybeans. Our results provide basic insights into the function of AtARA6 in soybeans and its role in abiotic stress processes in plants.
RESUMO
Different Mycobacterium spp. infections may indicate varied treatment regimens in the clinic. Thus, the species-level identification of Mycobacterium spp. is one of the most important tasks for a clinical microbiology laboratory. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid and accurate method for the identification of mycobacteria, this method lacks a comprehensive evaluation of the identification accuracy for clinically collected mycobacteria using VITEK MS Knowledge Base Version 3.0 (Ver 3.0). The objectives of the present study were to evaluate the identification performance of Mycobacterium spp. using Ver 3.0 and a sample processing kit for strain inactivation and protein extraction. Among the 507 Mycobacterium isolates, 46 isolates were M. tuberculosis, and 461 isolates were nontuberculous mycobacteria (NTM) (including 27 species: 17 species were slowly growing mycobacteria (SGM), and 10 species were rapidly growing mycobacteria (RGM)). The VITEK MS V3.0 library was used to correctly identify 476/507 (93.9%) isolates (425 isolates were correctly identified initially, and 51 more isolates were correctly identified on repeat), 23/507 (4.5%) isolates were unidentified, and 8/507 (1.6%) isolates were misidentified. In summary, we showed that Mycobacterium spp. can be adequately identified by Ver 3.0 in combination with the use of a standard sample processing kit.