Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832418

RESUMO

Pelagic clay is an emerging marine resource with strong hydrophilicity, fine particles and a large specific surface area. In this work, a 1T-MoS2/pelagic clay composite was fabricated by hydrothermal synthesis. In the composite, 1T-MoS2 nanosheets are evenly dispersed on the surface of the clay minerals, significantly reducing the agglomeration of MoS2. Compared with pure 1T-MoS2, the 1T-MoS2 nanosheets generated on the surface of pelagic clay have significantly smaller lateral dimensions and thicknesses. Moreover, the specific surface area is much larger than that of the pure 1T-MoS2 nanosheets fabricated by the same method, indicating that the active sites of the MoS2 sheets are fully exposed. In addition, the composite exhibited excellent hydrophilicity, leading to a high dispersibility in aqueous solutions. In this work, the composite was used as a catalyst in the reduction of 4-nitrophenol (4-NP), and the conversion of 4-NP reached up to 96.7%. This result shows that the 1T-MoS2/pelagic clay composite is a promising catalyst in a variety of reactions.

2.
J Colloid Interface Sci ; 369(1): 317-22, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22226616

RESUMO

Ordered MCM-41-type mesoporous silica nanoparticles (MSNs) with pore size of 2.6 nm were synthesized and were further modified with various amounts of 3-aminopropyltriethoxysilane (APTES), respectively, by a direct co-condensation method. These amine functionalized mesoporous silica nanoparticles (Am-MSNs) were employed to complex with plasmid DNA (pDNA) to study their adsorption and protection capacities. The results demonstrate the MSNs functionalized with aminopropyl groups present advanced adsorption capacities for pDNA immobilization. And Am-MSNs with high APTES amount lead to high amount of pDNA adsorption. Further investigation of pDNA protection shows that Am-MSNs with moderate APTES amount could completely protect pDNA from enzymatic degradation, while those with smaller and/or higher amount of APTES could partially provide protection of pDNA.


Assuntos
DNA/isolamento & purificação , Nanopartículas/química , Plasmídeos/isolamento & purificação , Silanos/química , Dióxido de Silício/química , Nanopartículas/ultraestrutura , Porosidade , Propilaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA