RESUMO
In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4â eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.
RESUMO
Direct charge transfer at wet-processed organic/organic heterojunction interfaces is observed using femtosecond interfacial sensitive spectroscopy. UV-vis absorption and ultraviolet photoelectron spectroscopy both indicate that a new interfacial energy gap (â¼1.2 eV) exists when an interface is formed between regioregular poly(3-hexylthiophene-2,5-diyl) and poly(benzimidazobenzophenanthroline). Resonant pumping at 1.2 eV creates an electric field-induced second-order optical signal, suggesting the existence of a transient electric field due to separated electrons and holes at interfaces, which recombine through a nongeminate process. The fact that direct charge transfer exists at wet-processed organic/organic heterojunctions provides a physical foundation for the previously reported ground-state charge transfer phenomenon. Also, it creates new opportunities to better control charge transfer with preserved momentum and spins at organic material interfaces for spintronic applications.