Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(30): e202405123, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38714495

RESUMO

In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.

2.
J Phys Chem Lett ; 13(37): 8733-8739, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36095150

RESUMO

Direct charge transfer at wet-processed organic/organic heterojunction interfaces is observed using femtosecond interfacial sensitive spectroscopy. UV-vis absorption and ultraviolet photoelectron spectroscopy both indicate that a new interfacial energy gap (∼1.2 eV) exists when an interface is formed between regioregular poly(3-hexylthiophene-2,5-diyl) and poly(benzimidazobenzophenanthroline). Resonant pumping at 1.2 eV creates an electric field-induced second-order optical signal, suggesting the existence of a transient electric field due to separated electrons and holes at interfaces, which recombine through a nongeminate process. The fact that direct charge transfer exists at wet-processed organic/organic heterojunctions provides a physical foundation for the previously reported ground-state charge transfer phenomenon. Also, it creates new opportunities to better control charge transfer with preserved momentum and spins at organic material interfaces for spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA