Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biochim Biophys Acta ; 1849(12): 1423-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26518267

RESUMO

Excessive mitochondrial fission is associated with the pathogenesis of neurodegenerative diseases. Dynamin-related protein 1 (Drp1) possesses specific fission activity in the mitochondria and peroxisomes. Various post-translational modifications of Drp1 are known to modulate complex mitochondrial dynamics. However, the post-transcriptional regulation of Drp1 remains poorly understood. Here, we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) regulates Drp1 expression at the post-transcriptional level. hnRNP A1 directly interacts with Drp1 mRNA at its 3'UTR region, and enhances translation potential without affecting mRNA stability. Down-regulation of hnRNP A1 induces mitochondrial elongation by reducing Drp1 expression. Moreover, depletion of hnRNP A1 suppresses 3-NP-mediated mitochondrial fission and dysfunction. In contrast, over-expression of hnRNP A1 promotes mitochondrial fragmentation by increasing Drp1 expression. Additionally, hnRNP A1 significantly exacerbates 3-NP-induced mitochondrial dysfunction and cell death in neuroblastoma cells. Interestingly, treatment with 3-NP induces subcellular translocation of hnRNP A1 from the nucleus to the cytoplasm, which accelerates the increase in Drp1 expression in hnRNP A1 over-expressing cells. Collectively, our findings suggest that hnRNP A1 controls mitochondrial dynamics by post-transcriptional regulation of Drp1.


Assuntos
GTP Fosfo-Hidrolases/biossíntese , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/fisiologia , Proteínas Associadas aos Microtúbulos/biossíntese , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/biossíntese , Proteínas de Neoplasias/fisiologia , Neuroblastoma/genética , Processamento Pós-Transcricional do RNA , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dinaminas , GTP Fosfo-Hidrolases/genética , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neuroblastoma/patologia , Ligação Proteica , Transporte Proteico , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética
2.
J Biol Chem ; 289(4): 2195-204, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324263

RESUMO

Mitochondrial dynamics greatly influence the biogenesis and morphology of mitochondria. Mitochondria are particularly important in neurons, which have a high demand for energy. Therefore, mitochondrial dysfunction is strongly associated with neurodegenerative diseases. Until now various post-translational modifications for mitochondrial dynamic proteins and several regulatory proteins have explained complex mitochondrial dynamics. However, the precise mechanism that coordinates these complex processes remains unclear. To further understand the regulatory machinery of mitochondrial dynamics, we screened a mitochondrial siRNA library and identified mortalin as a potential regulatory protein. Both genetic and chemical inhibition of mortalin strongly induced mitochondrial fragmentation and synergistically increased Aß-mediated cytotoxicity as well as mitochondrial dysfunction. Importantly we determined that the expression of mortalin in Alzheimer disease (AD) patients and in the triple transgenic-AD mouse model was considerably decreased. In contrast, overexpression of mortalin significantly suppressed Aß-mediated mitochondrial fragmentation and cell death. Taken together, our results suggest that down-regulation of mortalin may potentiate Aß-mediated mitochondrial fragmentation and dysfunction in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas de Transporte/biossíntese , Regulação para Baixo , Proteínas de Choque Térmico HSP70/biossíntese , Mitocôndrias/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Proteínas de Transporte/genética , Morte Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/genética , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia
3.
Biochem Biophys Res Commun ; 460(2): 428-33, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25796328

RESUMO

Previously, we showed that BIX-01294 treatment strongly activates autophagy. Although, the interplay between autophagy and ciliogenesis has been suggested, the role of autophagy in ciliogenesis is controversial and largely unknown. In this study, we investigated the effects of autophagy induced by BIX-01294 on the formation of primary cilia in human retinal pigmented epithelial (RPE) cells. Treatment of RPE cells with BIX-01294 caused strong elongation of the primary cilium and increased the number of ciliated cells, as well as autophagy activation. The elongated cilia in serum starved cultured cells were gradually decreased by re-feeding the cells with normal growth medium. However, the disassembly of cilia was blocked in the BIX-01294-treated cells. In addition, both genetic and chemical inhibition of autophagy suppressed BIX-01294-mediated ciliogenesis in RPE cells. Taken together, these results suggest that autophagy induced by BIX-01294 positively regulates the elongation of primary cilium.


Assuntos
Autofagia/efeitos dos fármacos , Azepinas/farmacologia , Cílios/efeitos dos fármacos , Quinazolinas/farmacologia , Linhagem Celular Transformada , Cílios/fisiologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos
4.
Exp Dermatol ; 23(3): 204-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24499351

RESUMO

Autophagy degrades cellular components and organelles through a cooperative process involving autophagosomes and lysosomes. Although autophagy is known to mainly regulate the turnover of cellular components, the role of autophagy in melanogenesis has not been well addressed. Here, we show that inhibition of autophagy suppresses the antimelanogenesis activity of resveratrol (RSV), a well-known antimelanogenic agent. RSV strongly increased autophagy in melanocytes. However, the depletion of ATG5 significantly suppressed RSV-mediated antimelanogenesis as well as RSV-induced autophagy in melanocytes. Moreover, suppression of ATG5 retrieved the RSV-mediated downregulation of tyrosinase and TRP1 in α-MSH-treated cells. Most importantly, electron microscopy analysis revealed that autophagosomes engulfed melanin or melanosomes after combined treatment of α-MSH and RSV. Taken together, these results suggest that RSV-mediated autophagy regulates melanogenesis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Autofagia/efeitos dos fármacos , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Estilbenos/farmacologia , alfa-MSH/farmacologia , Proteína 5 Relacionada à Autofagia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Melanócitos/metabolismo , Melanócitos/ultraestrutura , Melanossomas/ultraestrutura , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Resveratrol , Tripsina/metabolismo
5.
Biochem Biophys Res Commun ; 442(3-4): 165-70, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24269817

RESUMO

Autophagy is a cellular degradation process for cellular aggregates and unneeded cellular compartments including damaged mitochondria, ER, and peroxisomes. Melanosome is cellular organelle that is the cellular site of generation, storage and transports of melanin in melanocytes. Despite potential importance of autophagy, the role of autophagy in melanogenesis and melanosome autophagy are largely unknown. In here, we identified 3'-hydroxydaidzein (3'-ODI) as an autophagy inducer from a phytochemical library screening. Treatment with 3'-ODI significantly reduced α-MSH-mediated melanogenesis but efficiently increased autophagy both in melanoma cells and melanocytes. Furthermore, inhibition of autophagy significantly reduced the anti-melanogenic effects of 3'-ODI in α-MSH-stimulated melanoma cells. Taken together, these results suggest that autophagy mediates anti-melanogenic activity of 3'-ODI.


Assuntos
Autofagia/efeitos dos fármacos , Isoflavonas/farmacologia , Melaninas/antagonistas & inibidores , Melanócitos/efeitos dos fármacos , Melanossomas/efeitos dos fármacos , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Linhagem Celular Tumoral , Melaninas/biossíntese , Melanócitos/metabolismo , Melanossomas/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Interferência de RNA , alfa-MSH/farmacologia
6.
Biol Pharm Bull ; 35(7): 1069-75, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22791154

RESUMO

Autophagy is associated with cell survival and cell death. Autophagy is implicated in the pathophysiology of various human diseases. In order to identify autophagy regulatory molecules, we screened a chemical drug library in SH-SY5Y cells and selected Sertindole as a potent autophagy inducer. Sertindole was developed as an antipsychotic drug for Schizophrenia. Sertindole treatment highly induced the formation of autophagosomes as well as LC3 conversion. Subsequently, Sertindole-induced autophagy was efficiently suppressed by down regulation of ATG5. Sertindole also increased reactive oxygen species (ROS) production, which contributes to autophagy-associated cell death in neuroblastoma cells. ROS scavengers such as N-acetylcysteine and Trolox suppressed not only ROS generation but also autophagy activation by Sertindole. These results suggest Sertindole induces autophagy and autophagy-associated cell death by ROS production in neuroblastoma cells.


Assuntos
Antipsicóticos/farmacologia , Autofagia/efeitos dos fármacos , Imidazóis/farmacologia , Indóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Autofagia/fisiologia , Linhagem Celular Tumoral , Cromanos/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Humanos , Neuroblastoma , Receptores de Dopamina D2/fisiologia
7.
Biochem Biophys Res Commun ; 404(4): 1039-43, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21187062

RESUMO

Autophagy is a catabolic cellular process involving self-digestion and turnover of macromolecules and entire organelles. Autophagy is primarily a protective process in response to cellular stress, but it can be associated with cell death. Genetic evidence also supports autophagy function as a tumor suppressor mechanism. To identify specific regulators to autophagy, we screened the Lopac 1280 and the Prestwick chemical libraries using a cell-based screening system with autophagy marker (green fluorescence protein conjugated LC3 protein (GFP-LC3)). We identified ARP101, a selective matrix metalloproteinase-2 (MMP-2) inhibitor as one of the most potent inducer of autophagy. ARP101 treatment was highly effective in inducing the formation of autophagosome and conversion of LC3I into LC3II. Moreover, ARP101-induced autophagy was completely blocked in mouse embryo fibroblasts that lacked autophagy related gene 5 (ATG5(-/-) MEF). Interestingly, cell death induced by ARP101 was not inhibited by zVAD, a pan caspase inhibitor, whereas, it was efficiently suppressed by addition of 3-methyladenine, an autophagy inhibitor. These results suggest that the selective MMP-2 inhibitor, ARP101, induces autophagy and autophagy-associated cell death.


Assuntos
Autofagia , Inibidores de Metaloproteinases de Matriz , Neoplasias/enzimologia , Inibidores de Proteases/farmacologia , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Inibidores de Proteases/química , Bibliotecas de Moléculas Pequenas , Sulfonamidas/química
8.
Mol Med ; 16(7-8): 271-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20379613

RESUMO

Hereditary colorectal cancer develops through a series of well-defined genetic and histological changes. However, elucidation of the canonical pathway based on hereditary colorectal cancer has not provided a clear explanation of the molecular mechanisms of sporadic colorectal cancer. To identify the alterative pathways involved in sporadic colorectal tumorigenesis, we performed gene expression analysis in patients with sporadic colorectal tumors. A comparison analysis of gene expression profiles revealed a pattern of upregulation of small proline rich repeat protein 3 (SPRR3) in tumor samples. SPRR3 has previously been reported to be downregulated in esophageal cancer. However, in the present study, we observed that SPRR3 was strongly upregulated in 31 of 35 samples of sporadic colorectal tumors (88%). We also determined that overexpression of SPRR3 not only accelerates colorectal cancer cell proliferation but also is associated with lymphovascular invasion in colorectal cancer. Moreover, AKT was activated and p53 levels were decreased in cells that overexpressed SPRR3. In contrast to the pattern seen in esophageal cancer, these results suggest that increased expression of SPRR3 is involved in colorectal tumorigenesis.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Colorretais/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/genética , Regulação Neoplásica da Expressão Gênica , Idoso , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Distribuição de Qui-Quadrado , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas Ricas em Prolina do Estrato Córneo/biossíntese , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima
9.
J Exp Med ; 216(5): 1120-1134, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30898893

RESUMO

Glioblastoma (GBM) is the most malignant brain tumor with profound genomic alterations. Tumor suppressor genes regulate multiple signaling networks that restrict cellular proliferation and present barriers to malignant transformation. While bona fide tumor suppressors such as PTEN and TP53 often undergo inactivation due to mutations, there are several genes for which genomic deletion is the primary route for tumor progression. To functionally identify putative tumor suppressors in GBM, we employed in vivo RNAi screening using patient-derived xenograft models. Here, we identified PIP4K2A, whose functional role and clinical relevance remain unexplored in GBM. We discovered that PIP4K2A negatively regulates phosphoinositide 3-kinase (PI3K) signaling via p85/p110 component degradation in PTEN-deficient GBMs and specifically targets p85 for proteasome-mediated degradation. Overexpression of PIP4K2A suppressed cellular and clonogenic growth in vitro and impeded tumor growth in vivo. Our results unravel a novel tumor-suppressive role of PIP4K2A for the first time and support the feasibility of combining oncogenomics with in vivo RNAi screen.


Assuntos
Neoplasias Encefálicas/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Glioblastoma/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Neoplasias Encefálicas/patologia , Carcinogênese/metabolismo , Proliferação de Células/genética , Células Cultivadas , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Feminino , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Interferência de RNA , Transdução Genética , Carga Tumoral/genética
10.
Autophagy ; 15(9): 1495-1505, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30821607

RESUMO

Several studies have shown that dysfunction of macroautophagy/autophagy is associated with many human diseases, including neurodegenerative disease and cancer. To explore the molecular mechanisms of autophagy, we performed a cell-based functional screening with SH-SY5Y cells stably expressing GFP-LC3, using an siRNA library and identified TMED10 (transmembrane p24 trafficking protein 10), previously known as the γ-secretase-modulating protein, as a novel regulator of autophagy. Further investigations revealed that depletion of TMED10 induced the activation of autophagy. Interestingly, protein-protein interaction assays showed that TMED10 directly binds to ATG4B (autophagy related gene 4B cysteine peptidase), and the interaction is diminished under autophagy activation conditions such as rapamycin treatment and serum deprivation. In addition, inhibition of TMED10 significantly enhanced the proteolytic activity of ATG4B for LC3 cleavage. Importantly, the expression of TMED10 in AD (Alzheimer disease) patients was considerably decreased, and downregulation of TMED10 increased amyloid-ß (Aß) production. Treatment with Aß increased ATG4B proteolytic activity as well as dissociation of TMED10 and ATG4B. Taken together, our results suggest that the AD-associated protein TMED10 negatively regulates autophagy by inhibiting ATG4B activity.Abbreviations: Aß: amyloid-ß; AD: Alzheimer disease; ATG: autophagy related; BECN1: beclin 1; BiFC: bimolecular fluorescence complementation; CD: cytosolic domain; GFP: green fluorescent protein; GLUC: Gaussia luciferase; IP: immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LD: luminal domain; PD: Parkinson disease; ROS: reactive oxygen species; siRNA: small interfering RNA; SNP: single-nucleotide polymorphisms; TD: transmembrane domain; TMED10: transmembrane p24 trafficking protein 10; VC: C terminus of Venus fluorescent protein; VN: N terminus of Venus fluorescent protein.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/genética , Encéfalo/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas/metabolismo , Doença de Alzheimer/genética , Autofagossomos/efeitos dos fármacos , Autofagossomos/enzimologia , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/genética , Linhagem Celular , Cisteína Endopeptidases/genética , Regulação para Baixo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
11.
Anticancer Res ; 38(1): 271-277, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277783

RESUMO

The ultraviolent irradiation resistance-associated gene (UVRAG), a component of the Beclin 1/autophagy-related 6 complex, regulates the autophagy initiation step and functions in the DNA-damage response. UVRAG is frequently mutated in various cancer types, and mutations of UVRAG increase sensitivity to chemotherapy by impairing DNA-damage repair. In this study, we addressed the epigenetic regulation of UVRAG in colorectal cancer cells. UVRAG expression was increased in cells treated with histone deacetylase (HDAC) inhibitors, such as valproic acid and suberoylanilide hydroxamic acid. Down-regulation of HDAC1 enhanced UVRAG expression in colorectal cancer cells. In addition, both chemical and genetic inhibition of HDAC1 reduced the activation of caspase-3 and cytotoxicity in 5-fluorouracil (5FU)-treated cancer cells. In contrast, UVRAG overexpression inhibited caspase activation and cell death in 5FU-treated cells. Taken together, our findings suggest that up-regulation of UVRAG by HDAC1 inhibition potentiates DNA-damage-mediated cell death in colorectal cancer cells.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Fluoruracila/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Morte Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Dano ao DNA , Epigênese Genética , Células HCT116 , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Regulação para Cima
12.
BMB Rep ; 50(4): 214-219, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28148392

RESUMO

Mitochondria play pivotal roles in the ATP production, apoptosis and generation of reactive oxygen species. Although dynamic regulation of mitochondria morphology is a critical step to maintain cellular homeostasis, the regulatory mechanisms are not yet fully elucidated. In this study, we identified miR-200a-3p as a novel regulator of mitochondrial dynamics by targeting mitochondrial fission factor (MFF). We demonstrated that the ectopic expression of miR-200a-3p enhanced mitochondrial elongation, mitochondrial ATP synthesis, mitochondrial membrane potential and oxygen consumption rate. These results indicate that miR-200a-3p positively regulates mitochondrial elongation by downregulating MFF expression. [BMB Reports 2017; 50(4): 214-219].


Assuntos
Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Regiões 3' não Traduzidas , Trifosfato de Adenosina/metabolismo , Antagomirs/metabolismo , Sequência de Bases , Linhagem Celular , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Consumo de Oxigênio , Alinhamento de Sequência
13.
Cancer Lett ; 385: 21-27, 2017 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-27836735

RESUMO

Autophagy plays complex roles in tumor initiation and development, and the expression of autophagy-related genes (ATGs) is differentially regulated in various cancer cells, depending on their environment. In this study, we analyzed the expressional relationship between polypyrimidine tract-binding protein 1 (PTBP1) and ATG10 in metastatic colorectal cancer. PTBP1 is associated with tumor metastasis in primary colorectal tumors and colorectal cancer liver metastasis (CLM) tissues. In addition, PTPB1 directly interacts with mRNA of ATG10, and regulates ATG10 expression level in colorectal cancer cells. Ectopic expression of PTBP1 decreased ATG10 expression, whereas down-regulation of PTBP1 increased ATG10 level. In contrast to PTBP1, expression of ATG10 was decreased in CLM tissues. Knock down of ATG10 promoted cell migration and invasion of colorectal cancer cells. Moreover, depletion of ATG10 modulated epithelial-mesenchymal transition-associated proteins in colorectal cancer cells: N-cadherin, TCF-8/ZEB1, and CD44 were up-regulated, whereas E-cadherin was down-regulated. Taken together, our findings suggest that expression of ATG10 negatively regulated by PTBP1 is associated with metastasis of colorectal cancer cells.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Movimento Celular , Neoplasias Colorretais/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Antígenos CD/metabolismo , Proteínas Relacionadas à Autofagia/genética , Caderinas/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação para Baixo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Receptores de Hialuronatos/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Transfecção , Proteínas de Transporte Vesicular/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
14.
PLoS One ; 11(12): e0168025, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27941997

RESUMO

The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH)-smoothened (Smo) signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling.


Assuntos
Cílios/fisiologia , Melaninas/biossíntese , Melanócitos/fisiologia , Fenômenos Fisiológicos da Pele , Pigmentação da Pele/fisiologia , Pele/citologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cílios/efeitos dos fármacos , Citocalasina D/farmacologia , Proteínas Hedgehog/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Melanócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Quinazolinonas/farmacologia , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/metabolismo , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Pigmentação da Pele/efeitos dos fármacos , Proteína Gli2 com Dedos de Zinco
15.
Oncotarget ; 7(35): 57186-57196, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27527864

RESUMO

Autophagy is a catabolic degradation process and maintains cellular homeostasis. And autophagy is activated in response to various stress conditions. Although O-GlcNAcylation functions a sensor for nutrient and stress, the relationship between O-GlcNAcylation and autophagy is largely unknown. Here, we identified that ATG4B is novel target for O-GlcNAcylation under metabolic stress condition. Treatment with PugNAc, an O-GlcNAcase inhibitor increased activation of autophagy in SH-SY5Y cells. Both bimolecular fluorescence complementation and immunoprecipitation assay indicated that OGT directly interacts with ATG4B in SH-SY5Y cells. We also found that the O-GlcNAcylated ATG4B was increased in autophagy activation conditions, and down-regulation of OGT reduces O-GlcNAcylation of ATG4B under low glucose condition. Furthermore, the proteolytic activity of ATG4B for LC3 cleavage was enhanced in PugNAc-treated cells. Taken together, these results imply that O-GlcNAcylation of ATG4B regulates autophagy activation by increasing its proteolytic activity under metabolic stress condition.


Assuntos
Proteínas Relacionadas à Autofagia/química , Autofagia , Cisteína Endopeptidases/química , Regulação Enzimológica da Expressão Gênica , Oxigenases de Função Mista/química , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Fibroblastos/metabolismo , Corantes Fluorescentes/química , Glucose/química , Humanos , Imunoprecipitação , Luciferases/metabolismo , Espectrometria de Massas , Camundongos , Oximas/metabolismo , Fenilcarbamatos/metabolismo , Transdução de Sinais , beta-N-Acetil-Hexosaminidases/metabolismo
16.
Oncotarget ; 7(40): 65957-65967, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27602754

RESUMO

The tumor necrosis factor-related apoptosis inducing ligand (TRAIL) preferentially induces apoptosis in cancer cells. However, many tumors are resistant to TRAIL-induced apoptosis, and resistance mechanisms are not fully understood. To identify novel regulatory molecules of TRAIL resistance, we screened a siRNA library targeting the human kinome, and NEK4 (NIMA-related kinase-4) was identified. Knockdown of NEK4 sensitized TRAIL-resistant cancer cells and in vivo xenografts to cell death. In contrast, over expression of NEK4 suppressed TRAIL-induced cell death in TRAIL-sensitive cancer cells. In addition, loss of NEK4 resulted in decrease of the anti-apoptotic protein survivin, but an increase in apoptotic cell death. Interestingly, NEK4 was highly upregulated in tumor tissues derived from patients with lung cancer and colon cancer. These results suggest that inhibition of NEK4 sensitizes cancer cells to TRAIL-induced apoptosis by regulation of survivin expression.


Assuntos
Apoptose , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/patologia , Quinases Relacionadas a NIMA/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Animais , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Nus , Prognóstico , Survivina , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
PLoS One ; 10(5): e0128078, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26024475

RESUMO

Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM) derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF) expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Células Cultivadas , Sangue Fetal/citologia , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/fisiologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Pigmentação da Pele/efeitos dos fármacos , alfa-MSH/metabolismo , alfa-MSH/farmacologia
18.
Biomol Ther (Seoul) ; 23(4): 327-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26157548

RESUMO

Primary cilia have critical roles in coordinating multiple cellular signaling pathways. Dysregulation of primary cilia is implicated in various ciliopathies. To identify specific regulators of autophagy, we screened chemical libraries and identified mefloquine, an anti-malaria medicine, as a potent regulator of primary cilia in human retinal pigmented epithelial (RPE) cells. Not only ciliated cells but also primary cilium length was increased in mefloquine-treated RPE cells. Treatment with mefloquine strongly induced the elongation of primary cilia by blocking disassembly of primary cilium. In addition, we found that autophagy was increased in mefloquine-treated cells by enhancing autophagic flux. Both chemical and genetic inhibition of autophagy suppressed ciliogenesis in mefloquine-treated RPE cells. Taken together, these results suggest that autophagy induced by mefloquine positively regulates the elongation of primary cilia in RPE cells.

19.
PLoS One ; 10(2): e0118190, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671433

RESUMO

Primary cilia are conserved cellular organelles that regulate diverse signaling pathways. Autophagy is a complex process of cellular degradation and recycling of cytoplasmic proteins and organelles, and plays an important role in cellular homeostasis. Despite its potential importance, the role of autophagy in ciliogenesis is largely unknown. In this study, we identified sertraline as a regulator of autophagy and ciliogenesis. Sertraline, a known antidepressant, induced the growth of cilia and blocked the disassembly of cilia in htRPE cells. Following treatment of sertraline, there was an increase in the number of cells with autophagic puncta and LC3 protein conversion. In addition, both a decrease of ATG5 expression and the treatment of an autophagy inhibitor resulted in the suppression of the sertraline-induced activation of autophagy in htRPE cells. Interestingly, we found that genetic and chemical inhibition of autophagy attenuated the growth of primary cilia in htRPE cells. Taken together, our results suggest that the inhibition of autophagy suppresses sertraline-induced ciliogenesis.


Assuntos
Autofagia/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia , Proteína 5 Relacionada à Autofagia , Linhagem Celular , Cílios/efeitos dos fármacos , Cílios/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Telomerase/metabolismo
20.
PLoS One ; 9(11): e112130, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25390895

RESUMO

To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10) interacts with heat shock protein 60 (HSP60) and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS) generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.


Assuntos
Chaperonina 10/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Neuroblastoma/fisiopatologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Chaperonina 10/antagonistas & inibidores , Chaperonina 10/genética , Regulação para Baixo/efeitos dos fármacos , Dinaminas , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neuroblastoma/metabolismo , Nitrocompostos/farmacologia , Propionatos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA