Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cardiovasc Disord ; 24(1): 282, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811883

RESUMO

Sudden cardiac death (SCD) is a major public health issue worldwide. In the young (< 40 years of age), genetic cardiomyopathies and viral myocarditis, sometimes in combination, are the most frequent, but underestimated, causes of SCD. Molecular autopsy is essential for prevention. Several studies have shown an association between genetic cardiomyopathies and viral myocarditis, which is probably underestimated due to insufficient post-mortem investigations. We report on four autopsy cases illustrating the pathogenesis of these combined pathologies. In two cases, a genetic hypertrophic cardiomyopathy was diagnosed in combination with Herpes Virus Type 6 (HHV6) and/or Parvovirus-B19 (PVB19) in the heart. In the third case, autopsy revealed a dilated cardiomyopathy and virological analyses revealed acute myocarditis caused by three viruses: PVB19, HHV6 and Epstein-Barr virus. Genetic analyses revealed a mutation in the gene coding for desmin. The fourth case illustrated a channelopathy and a PVB19/HHV6 coinfection. Our four cases illustrate the highly probable deleterious role of cardiotropic viruses in the occurrence of SCD in subjects with genetic cardiomyopathies. We discuss the pathogenetic link between viral myocarditis and genetic cardiomyopathy. Molecular autopsy is essential in prevention of these SCD, and a close collaboration between cardiologists, pathologists, microbiologists and geneticians is mandatory.


Assuntos
Autopsia , Morte Súbita Cardíaca , Herpesvirus Humano 6 , Miocardite , Parvovirus B19 Humano , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/virologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Causas de Morte , Coinfecção , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/patologia , Morte Súbita Cardíaca/prevenção & controle , Infecções por Vírus Epstein-Barr/complicações , Evolução Fatal , Predisposição Genética para Doença , Herpesvirus Humano 4/genética , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/isolamento & purificação , Mutação , Miocardite/virologia , Miocardite/patologia , Miocardite/genética , Infecções por Parvoviridae/complicações , Parvovirus B19 Humano/genética , Infecções por Roseolovirus/complicações , Infecções por Roseolovirus/virologia , Infecções por Roseolovirus/diagnóstico , Infecções por Roseolovirus/patologia
2.
Stem Cell Res ; 76: 103338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354647

RESUMO

Myofibrillar myopathy (MFM) is a rare genetic disorder characterized by muscular dystrophy that is often associated with cardiac disease. This disease is caused by mutations in several genes, among them DES (encoding desmin) is the most frequently affected. Peripheral blood mononuclear cells from 5 different MFM patients with different DES mutations were reprogrammed into induced pluripotent stem cells (IPSC) using non-integrative vectors. For each patient, one IPSC clone was selected and demonstrated pluripotency hallmarks without genomic abnormalities. SNP profiles were identical to the cells of origin and all the clones have the capacity to differentiate into all three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatias Congênitas Estruturais , Humanos , Leucócitos Mononucleares , Miopatias Congênitas Estruturais/genética , Mutação/genética
3.
Stem Cell Res Ther ; 15(1): 10, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167524

RESUMO

BACKGROUND: Beyond the observed alterations in cellular structure and mitochondria, the mechanisms linking rare genetic mutations to the development of heart failure in patients affected by desmin mutations remain unclear due in part, to the lack of relevant human cardiomyocyte models. METHODS: To shed light on the role of mitochondria in these mechanisms, we investigated cardiomyocytes derived from human induced pluripotent stem cells carrying the heterozygous DESE439K mutation that were either isolated from a patient or generated by gene editing. To increase physiological relevance, cardiomyocytes were either cultured on an anisotropic micropatterned surface to obtain elongated and aligned cardiomyocytes, or as a cardiac spheroid to create a micro-tissue. Moreover, when applicable, results from cardiomyocytes were confirmed with heart biopsies of suddenly died patient of the same family harboring DESE439K mutation, and post-mortem heart samples from five control healthy donors. RESULTS: The heterozygous DESE439K mutation leads to dramatic changes in the overall cytoarchitecture of cardiomyocytes, including cell size and morphology. Most importantly, mutant cardiomyocytes display altered mitochondrial architecture, mitochondrial respiratory capacity and metabolic activity reminiscent of defects observed in patient's heart tissue. Finally, to challenge the pathological mechanism, we transferred normal mitochondria inside the mutant cardiomyocytes and demonstrated that this treatment was able to restore mitochondrial and contractile functions of cardiomyocytes. CONCLUSIONS: This work highlights the deleterious effects of DESE439K mutation, demonstrates the crucial role of mitochondrial abnormalities in the pathophysiology of desmin-related cardiomyopathy, and opens up new potential therapeutic perspectives for this disease.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Desmina/genética , Desmina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cardiomiopatias/metabolismo , Mutação/genética , Miócitos Cardíacos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA