Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 623, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710891

RESUMO

BACKGROUND: An increase in cancer stem cell (CSC) populations and their resistance to common treatments could be a result of c-Myc dysregulations in certain cancer cells. In the current study, we investigated anticancer effects of c-Myc decoy ODNs loaded-poly (methacrylic acid-co-diallyl dimethyl ammonium chloride) (PMA-DDA)-coated silica nanoparticles as carriers on cancer-like stem cells (NTERA-2). METHODS AND RESULTS: The physicochemical characteristics of the synthesized nanocomposites (SiO2@PMA-DDA-DEC) were analyzed using FT-IR, DLS, and SEM techniques. UV-Vis spectrophotometer was applied to analyze the release pattern of decoy ODNs from the nanocomposite. Furthermore, uptake, cell viability, apoptosis, and cell cycle assays were used to investigate the anticancer effects of nanocomposites loaded with c-Myc decoy ODNs on NTERA-2 cancer cells. The results of physicochemical analytics demonstrated that SiO2@PMA-DDA-DEC nanocomposites were successfully synthesized. The prepared nanocomposites were taken up by NTERA-2 cells with high efficiency, and could effectively inhibit cell growth and increase apoptosis rate in the treated cells compared to the control group. Moreover, SiO2@PMA-DDA nanocomposites loaded with c-Myc decoy ODNs induced cell cycle arrest at the G0/G1 phase in the treated cells. CONCLUSIONS: The conclusion drawn from this study is that c-Myc decoy ODN-loaded SiO2@PMA-DDA nanocomposites can effectively inhibit cell growth and induce apoptosis in NTERA-2 cancer cells. Moreover, given that a metal core is incorporated into this synthetic nanocomposite, it could potentially be used in conjunction with irradiation as part of a decoy-radiotherapy combinational therapy in future investigations.


Assuntos
Apoptose , Proliferação de Células , Nanopartículas , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-myc , Humanos , Apoptose/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proliferação de Células/efeitos dos fármacos , Nanopartículas/química , Linhagem Celular Tumoral , Nanocompostos/química , Polieletrólitos/química , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/química , Sobrevivência Celular/efeitos dos fármacos , Dióxido de Silício/química , Poliaminas/química , Poliaminas/farmacologia , Ciclo Celular/efeitos dos fármacos
2.
Cell Biol Int ; 45(5): 1001-1014, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33377576

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a critical regulator for angiogenesis, cell cycle progression, apoptosis, and drug resistance. Resistance toward EGF receptor (EGFR) inhibitors is a significant clinical concern for metastatic colon cancer patients. The present study aimed to evaluate the blocking influences of STAT3 decoy oligodeoxynucleotides (ODNs) on the STAT3 survival signaling pathway in nonresistant and erlotinib-resistant SW480 colon cancer cells. First, STAT3 decoy and scramble ODNs were designed according to STAT3 elements in the promoter region of MYCT1 gene and tested for the interaction of STAT3 protein with designed ODNs via in silico molecular docking study. Then, the efficiency of transfection and subcellular localization of ODNs were assessed using flow cytometry and fluorescence microscopy, respectively. Cell viability, cell cycle, and apoptosis tests, scratch and colony formation assays, and real-time PCR were also used to study the cancerous properties of cells. A considerable decrease in proliferation of colon cancer cells was observed with blockade of STAT3 signaling due to cell cycle arrest and induced apoptosis via downregulation of cyclin D1 and Bcl-XL, respectively. Furthermore, upon transfecting STAT3 decoy ODNs, colony formation potential and migration activity in both SW480 colon cancer cell lines were decreased compared to the control groups. From this study, it could be concluded that STAT3 is critical for cell growth inhibition and metastatic properties reduction of resistant SW480 colon cancer cells; therefore, STAT3 decoy ODNs could be considered as potential therapeutics along with current remedies for treating drug-resistant colon cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Oligodesoxirribonucleotídeos/farmacologia , Fator de Transcrição STAT3/genética , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Humanos , Metástase Neoplásica/genética , Oligodesoxirribonucleotídeos/genética , Fator de Transcrição STAT3/metabolismo
3.
J Cell Physiol ; 235(6): 5429-5444, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31912904

RESUMO

Due to the presence of cancer stem cells (CSCs), breast cancer often relapsed after conventional therapies. Strategies that induce differentiation of CSCs will be helpful in eradication of tumor cells, so we designed an oligodeoxynucleotide (ODNs) for targeting of signal transducer and activator of transcription 3 (STAT3) transcription factor which is involved in stemness, and constitutively activated in triple-negative breast cancer. Molecular docking and electrophoretic mobility shift assay analysis showed that decoy ODN bound specifically to the DNA binding site of STAT3 protein. The prevalent uptake of Cy3-labeled ODNs is in the cytoplasm and the nucleus of MDA-MB-231 treated cells. STAT3 decoy ODNs treatment showed cell growth inhibition by decreasing cell viability (17%), increasing the percentage of arrested cells in G0/G1 phases (18%), and triggering apoptosis (29%). Migration and invasion potential decreased from 10.77 to 6.76 µm/hr, by wound closure rate, and migrated/invaded percentage by 26.4% and 15.4% in the transwell assays, respectively. CD44 protein expression level on the cell surface also decreased, while CD24 increased. Mammosphere formation efficiency reduced in terms of tumorsphere size by 47%, while the required time increased. Cells morphology was changed, and lipid droplets were accumulated in the cytoplasm compared to the control and scrambled groups, in all assays (repeated triplicate). Furthermore, the gene expression of all downstream targets significantly decreased owing to suppressing the STAT3 transcription factor. Overall, the results confirmed the antitumor effects of STAT3 decoy in MDA-MB-231 cells. Thus, it seems that STAT3 decoy ODNs might be considered as an auxiliary tool for breast cancer eradicating by the differentiation therapy approach.


Assuntos
Neoplasias da Mama/terapia , Células-Tronco Neoplásicas/efeitos dos fármacos , Oligodesoxirribonucleotídeos/farmacologia , Fator de Transcrição STAT3/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Simulação de Acoplamento Molecular , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Oligodesoxirribonucleotídeos/química , Proteólise , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/química
4.
Cell Biol Int ; 44(12): 2485-2498, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32841441

RESUMO

In the present study, we introduced cholesterol (CLO)-conjugated bovine serum albumin nanoparticles (BSA NPs) as a new system for indirect targeting drug delivery. Tamoxifen, as an anticancer drug, was loaded on BSA NPs (BSA-TAX NPs); CLO was then conjugated to the BSA-TAX NPs surface for the targeted delivery of NPs system, by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide carbodiimide chemistry (CLO-BSA-TAX NPs). The physicochemical properties, toxicity, in vitro, and in vivo biocompatibility of the BSA NPs system were characterized on cancer cell lines (4T1). The results revealed that the BSA NPs system has a regular spherical shape and negative zeta-potential values. The drug release of BSA NPs system has shown controlled and pH-dependent drug release behavior. BSA NPs system was biocompatible but it was potentially toxic on the cancer cell line. The CLO-BSA-TAX NPs exhibited higher toxicity against cancer cell lines than other NPs formulation (BSA NPs and BSA-TAX NPs). It can be concluded that the CLO, as an indirect targeting agent, enhances the toxicity and specificity of NPs system on cancer cell lines. It could potentially be suitable approaches to targeting the tumors in clinical cancer therapy.


Assuntos
Colesterol/química , Sistemas de Liberação de Medicamentos/métodos , Soroalbumina Bovina/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Células MCF-7 , Nanopartículas/química , Nanopartículas/uso terapêutico , Tamanho da Partícula , Tamoxifeno/química , Tamoxifeno/metabolismo , Tamoxifeno/farmacologia
5.
Cell Biol Int ; 44(1): 14-26, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31393053

RESUMO

Mesenchymal stem cells (MSCs), which are known for having therapeutic applications, reside in stem cell niches where the oxygen concentration is low. At the molecular level, the master regulator of the cellular reaction to hypoxia is hypoxia-inducible transcription factor (HIF). The transcriptional response of a cell to hypoxia is affected by two major components; first, the structure of hypoxia-response elements (HREs), which primarily define how much of the HIF signal is integrated into the transcriptional output of individual genes. Second, the availability of other transcriptional factors cooperating with HIF in the context of HRE. In MSCs, the expression of a single gene by hypoxia depends on elements such as factors influencing the HIF activity, metabolic pathways, the real oxygen concentration in the cellular microenvironment, and duration of culture. In addition, specific growth factors and pro-infection cytokines, hormones, oncogenic signaling, as well as ultrasound are potent regulators of HIF in MSCs. Altogether, the response of MSCs to hypoxia is complex and mediated by several genes and molecular agents. Regarding the influence of hypoxia on MSCs, oxygen concentration must be taken into consideration based on the cell type and the aim of culture before a particular MSCs culture.

6.
Cell Biol Int ; 44(12): 2499-2511, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32841450

RESUMO

Resistance to radiotherapy and chemotherapy has been a major problem of conventional cancer therapies, which consequently leads to cancer relapse and cancer-related death. It is known that cancer stem cells (CSCs) play a key role in therapy resistance and CSC-based targeted therapies have been considered as a powerful tool for cancer treatment. In the current study, we investigated the synergistic effects of suppressing signal transducer and activator of transcription (STAT3) function by decoy ODNs on X-irradiation (XI) and methotrexate (MTX) exposure as a combinational therapy in triple-negative breast cancer (TNBC) MDA-MB-231 cells. Lipofectamine 2000® was used as a transfecting agent and the cells treated with Scramble ODNs (SCR) and decoy ODNs were subjected to irradiation with 2 Gy at single/fractionated (XI group) doses, different concentration of MTX group, and X-irradiation-methotrexate (XI/MTX group). Synergistic effects of STAT3 SCR and decoy ODNs on cells were investigated by cell viability (MTT), cell cycle profile, apoptosis rate, migration, and invasion assays. Statistical analysis of obtained data showed that STAT3 decoy ODNs significantly decreased the cell viability, arrested the growth at G0/G1 phase, increased apoptosis rate, and reduced migrated and invaded cells through transwell membrane, in XI, MTX, and XI/MTX exposed groups. Since STAT3 is a master transcription factor in breast cancer cells stemness, aggressiveness, TNBC's heterogeneity, and therapy resistance; therefore, inhibition of this transcription factor by decoy ODNs could increase antitumor efficiencies of XI and MTX exposure strategies. Accordingly, this method could have the potential to increase the efficiency of combination therapies.


Assuntos
Oligodesoxirribonucleotídeos/farmacologia , Fator de Transcrição STAT3/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Radiação , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
7.
Mol Biol Rep ; 47(3): 1859-1869, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016633

RESUMO

Cancer stem cells are commonly tolerant toward chemotherapy and radiotherapy. Oct4 and Sox2 transcription factors are shown to be overexpressed in various cancers. At the current research, inhibition of Oct4 and Sox2 transcription factors was performed through application of decoy oligodeoxynucleotides (ODNs) strategy via repressing stemness properties in HT29-ShE cells encompassing enriched cancer stem-like cells. Designed Oct4-Sox2 complex decoy ODNs were transfected into HT29-ShE cells with Lipofectamine reagent. At the next step, ODNs efficiency transfection and subcellular localization were determined via flow cytometry and fluorescence microscopy, respectively. Further investigations such as cell proliferation and apoptosis analysis, colonosphere formation, invasion and migration, and real-time PCR assays were also carried out. Obtained results shed light on the fact that the designed complex decoys were effectively transfected into HT29-ShE cells, and they were found to be localized in subcellular compartments. Oct4-Sox2 decoy ODNs led to decreased cell viability, arresting the cell cycle in G0/G1 phases, increasing apoptosis, inhibition of migration/invasion and colonosphere formation ability of HT29-ShE cells in comparison with control and scramble groups. Furthermore, Oct4-Sox2 complex decoy could modulate the MET process via alteration of mRNA expression of downstream genes. It could be concluded that application of Oct4-Sox2 transcription factor decoy strategy in cells with stemness potential could lead to inhibiting the cell growth and triggering differentiation. Therefore, this technique could be applied along with usual remedies (chemotherapy and radiotherapy) as high potential method for treating cancer.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Oligodesoxirribonucleotídeos/farmacologia , Fatores de Transcrição SOXB1/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Células HT29 , Humanos , Microscopia de Fluorescência , Complexos Multiproteicos/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo
8.
Mol Biol Rep ; 47(9): 6517-6529, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32767222

RESUMO

The current study intends to investigate a novel drug delivery system (DDS) based on niosomes structure (NISM) and bovine serum albumin (BSA) which was formulated to BSA coated NISM (NISM-B). Also, selenium nanoparticles (SeNPs) have been prepared by BSA mediated biosynthesis. Finally, the NISM-B was hybridized with SeNPs and was formulated as NISM-B@SeNPs for drug delivery applications. Physicochemical properties of all samples were characterized by UV-Vis spectroscopy, FT-IR, DLS, FESEM, and EDX techniques. The cytotoxicity of all samples against A549 cell line was assessed by cell viability analysis and flow cytometry for apoptotic cells as well as RT-PCR for the expression of MDR-1, Bax, and Bcl-2 genes. Besides, in vivo biocompatibility was performed by LD50 assay to evaluate the acute toxicity. The proposed formulation has a regular spherical shape and approximately narrow size distribution with proper zeta-potential values; the proposed DDS revealed a good biocompatibility. The compound showed a significant cytotoxic effect against A549 cell line. Although the Bax/Bcl-2 expression ratio was significantly in NISM-B@SeNPs- treated cancer cells, the expression of MDR-1 was non-significantly lower in NISM-B@SeNPs-treated cancer cells. The obtained results suggest that the proposed DDS presents a promising approach for drug delivery, co-delivery and multifunctional biomedicine applications.


Assuntos
Apoptose/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Nanopartículas/química , Selênio/química , Células A549 , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Difusão Dinâmica da Luz , Humanos , Lipossomos/toxicidade , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reologia , Soroalbumina Bovina/química , Espectrometria por Raios X , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
9.
Mol Biol Rep ; 47(9): 6793-6805, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32865703

RESUMO

Low sensitivity of cancer stem cells toward regular cancer therapy strategies is an important issue in the field of cancer remedy. The concept of cancer stem cell elimination has been a topic of interest in the field of molecular medicine for a long time. At the current study, it was aimed to elevate the sensitivity of cancer stem-like cells toward radiotherapy by treating with Oct4-Sox2 complex decoy oligodeoxynucleotides (ODNs). After treating HT29 and HT29-ShE cells with Oct4-Sox2 complex decoy ODNs, and analyzing the cellular uptake and localization of decoys, treated cells and control groups were subjected to irradiation by fractionated 6MV X-ray with a final dose of 2 Gy. Thereafter, the influence of radiotherapy on ODNs treated groups and control group was investigated on cell viability, cell cycle, apoptosis, colonosphere formation and scratch assay. Cellular uptake and localization assays demonstrated that decoy ODNs can efficiently be transfected to the cells and reside in subcellular compartment, where they pose their action on gene regulation. Post radiotherapy analysis indicated statistical significance in decoy ODNs treated cells by means of lower cell viability, cell cycle arrest in G2/M phase, increased cellular apoptosis, and reduced cell motility. Also, formed colonospheres were smaller in size and fewer in numbers. Considering the role of Oct4, and Sox2 transcription factors in signaling pathways of preserving stemness and inducing reverse EMT, application of decoy strategy could increase the sensitivity of cancer cells toward irradiation, which has a potential to eliminate the cancerous cells from tumors and support cancer treatment.


Assuntos
Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Neoplasias do Colo/metabolismo , Neoplasias do Colo/radioterapia , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Fatores de Transcrição SOXB1/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células HT29 , Humanos , Fator 3 de Transcrição de Octâmero/genética , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
10.
J Cell Physiol ; 234(12): 22765-22774, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31115051

RESUMO

Expression of master transcriptional regulators of stem cells (Oct4 and Sox2) is associated with mediating tumor proliferation and tumor differentiation. The main goal of this study is the investigation of specific binding of designed Oct4-Sox2 transcription factors decoy oligodeoxynucleotides (ODNs) sequence to their nucleus-extracted proteins in HT29-ShE cells containing enriched cancer stem-like cells (SCLCs). First, gene expression of Oct4, Sox2, and E-cadherin revealed the overexpression of Oct4 and Sox2 and downregulation of E-cadherin in HT29-ShE cells compared with HT29 wild-type and HT29-ShC cells. Next, Oct4-Sox2 complex decoy ODNs were designed according to their elements in the promoter region of Sox2 gene. Then, the interactions of Oct4 and Sox2 proteins to designed ODNs were evaluated in silico. Finally, DNA-protein interactions of decoy ODNs and their corresponding proteins were examined by electrophoretic mobility shift assay (EMSA). Analysis of gel shift retardation assay admitted the specific binding of designed ODNs sequence to the nuclear extracted Oct4 and Sox2 proteins. The results will be a promising approach to target cancer stem cells for potential use in differentiation therapy before chemotherapy and radiotherapy of cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Fator 3 de Transcrição de Octâmero/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Fatores de Transcrição SOXB1/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Antineoplásicos/metabolismo , Sítios de Ligação , Caderinas/genética , Caderinas/metabolismo , Forma Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Desenho de Fármacos , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/genética , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/genética , Transdução de Sinais
11.
J Cell Physiol ; 234(12): 22935-22946, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31111504

RESUMO

A better understanding of cancer stem cells (CSCs) may facilitate the prevention and treatment of cancers. Epithelial-mesenchymal transition (EMT) is a process activated during invasion and metastasis of tumors. EMT induction in normal and tumor cells makes them more resistant to chemotherapy. E-cadherin is a membrane protein and plays a role in tumor invasion, metastasis, and prognosis. Downregulation of E-cadherin is a hallmark of EMT. Here, we created a model of cancer stem-like cells enrichment via EMT induction using E-cadherin downregulation in HT29 cell line using a lentiviral vector carrying shRNA. We aimed to evaluate cancer and anti-CSC chemotherapeutics screening. The markers of EMT and CSCs were assessed and compared with control cells using flow cytometry, real-time PCR, immunocytochemistry, western blot, migration assay, invasion assay, and colony formation assay. The transduced cells showed a mesenchymal morphology. High levels of EMT-related proteins were also expressed. These results confirmed that the transduced cells underwent EMT. In addition, we observed an increased population of E-cadherin-downregulated HT29 cell line among the cells expressing colon CSC markers (CD133+ and CD44+ ) after EMT induction. E-cadherin-downregulated cells were morphologically like mesenchymal cells, and the number of CD133+ - and CD44+ -cells (CSC-like cells) increased. These cells can be used as stable models to study cancer cells and screening of antitumor therapeutics.


Assuntos
Caderinas/genética , Neoplasias do Colo/genética , Transição Epitelial-Mesenquimal/genética , Células-Tronco Neoplásicas/metabolismo , Antígeno AC133/genética , Caderinas/antagonistas & inibidores , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos/genética , Células HT29 , Humanos , Receptores de Hialuronatos/genética , Lentivirus/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética
12.
J Cell Physiol ; 234(5): 5628-5642, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30478951

RESUMO

Targeted delivery of therapeutic molecules into cancer cells is considered as a promising strategy to tackle cancer. Antibody-drug conjugates (ADCs), in which a monoclonal antibody (mAb) is conjugated to biologically active drugs through chemical linkers, have emerged as a promising class of anticancer treatment agents, being one of the fastest growing fields in cancer therapy. The failure of early ADCs led researchers to explore strategies to develop more effective and improved ADCs with lower levels of unconjugated mAbs and more-stable linkers between the drug and the antibody, which show improved pharmacokinetic properties, therapeutic indexes, and safety profiles. Such improvements resulted in the US Food and Drug Administration approvals of brentuximab vedotin, trastuzumab emtansine, and, more recently, inotuzumab ozogamicin. In addition, recent clinical outcomes have sparked additional interest, which leads to the dramatically increased number of ADCs in clinical development. The present review explores ADCs, their main characteristics, and new research developments, as well as discusses strategies for the selection of the most appropriate target antigens, mAbs, cytotoxic drugs, linkers, and conjugation chemistries.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/farmacocinética , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/farmacocinética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Segurança do Paciente , Medição de Risco
13.
Cell Biol Int ; 43(8): 852-862, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31033094

RESUMO

The transcription factor T-cell factor 3 (TCF3), one component of the Wnt pathway, is known as a cell-intrinsic inhibitor of many pluripotency genes in embryonic stem cells (ESCs) that influences the balance between pluripotency and differentiation. In this study, the effects of inhibition of TCF3 transcription factor on the stemness of mouse ESCs (mESCs) were investigated using the decoy oligodeoxynucleotides (ODNs) strategy. The TCF3 decoy and its scramble ODNs were designed and synthesized. The interaction specificity of the TCF3 decoy with the TCF3 transcription factor was evaluated by the electrophoretic mobility shift assay. Subcellular localization was carried out using fluorescence and confocal microscopy. Self-renewal and pluripotency of mESCs were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), cell cycle and apoptosis, alkaline phosphatase (ALP), embryoid body (EB) formation, and real-time assays. All experiments were performed in triplicate. The results showed that knockdown of TCF3 by decoy ODNs transfection in mESCs led to an increase in the cell proliferation, ALP enzyme activity, and master regulatory stemness genes and a decrease in the number and diameter of EBs. These results supported TCF3 as a potential target to maintain the pluripotency and self-renewal capacity of mESCs. Knockdown of the TCF3 transcription factor using decoy ODNs can be a promising method to maintain the stemness of stem cells in regenerative medicine and cell therapy researches.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Medicina Regenerativa , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Oligodesoxirribonucleotídeos/genética , Via de Sinalização Wnt/genética
14.
Cell Biol Int ; 43(1): 2-11, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30080277

RESUMO

Indirubin, an ingredient in traditional Chinese medicine, is considered as an anti-cancer agent. However, due to its hydrophobic nature, clinical efficiency has been limited. Drug delivery via nanotechnology techniques open new windows toward treatment of cancerous patients. Glioblastoma multiforme (GBM) is the most severe and common type of brain primary tumors. Of common problems in targeting therapies of glioblastoma is the availability of drug in tumoric tissues. In this study, Indirubin loaded solid lipid nanoparticles were prepared and their therapeutic potentials and antitumoric effects were assessed on GBM cell line (U87MG). The SLNs were prepared with Cetyl palmitate and Polysorbat 80 via high-pressure homogenization (HPH) methods in hot mode. Then, properties of SLNs including size, zeta potential, drug encapsulation efficacy (EE %) and drug loading were characterized. SLNs morphology and size were observed using SEM and TEM. The crystalinity of formulation was determined by different scattering calorimetry (DSC). The amount of drug release and antitumor efficiency were evaluated at both normal brain pH of 7.2 and tumoric pH of 6.8. The prapared SLNs had mean size of 130 nm, zeta potential of -16 mV and EE of 99.73%. The results of DSC showed proper encapsulation of drug into SLNs. Drug release assessment in both pH displayed sustain release property. The result of MTT test exhibited a remarkable increment in antitumor activity of Indirubin loaded SLN in comparison with free form of drug and blank SLN on multiform GB. This study indicated that Indirubin loaded SLNs could act as a useful anticancer drugs.


Assuntos
Antineoplásicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Lipídeos/química , Nanopartículas/química , Antineoplásicos/farmacologia , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Glioblastoma/patologia , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Nanopartículas/ultraestrutura , Tamanho da Partícula , Eletricidade Estática
15.
Cell Biol Int ; 43(12): 1379-1392, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30811084

RESUMO

The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three-dimensional scaffold from nano-hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X-ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM-MSCs)/scaffold. After 1, 4, and 12 weeks post-injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin-eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM-MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre-seeded nHA/Gel/SiC scaffold with rBM-MSCs improves osteogenesis in the engineered bone implant.

16.
Cell Mol Biol Lett ; 24: 12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923554

RESUMO

BACKGROUND: The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. Several studies have demonstrated a significant association between Pro12Ala polymorphism of the PPAR-γ2 gene and metabolic disorders. Therefore, this study aimed to evaluate the association of Pro12Ala polymorphism with increased risk of NAFLD in Iranian patients with type 2 diabetes mellitus. METHODS: This cross-sectional study was performed on 145 healthy control subjects and 145 NAFLD patients with a history of type 2 diabetes. Pro12Ala polymorphism genotyping was performed using PCR-restriction fragment length polymorphism (RFLP) technique with the Bs1I restriction enzyme. RESULTS: Our results demonstrated that CC and GG genotypes of Pro12Ala were found in the participants, but there was no statistically significant difference between NAFLD patients and healthy controls (P = 0.64 and χ2 = 0.21). CONCLUSION: This study suggests that Pro12Ala polymorphism of the PPAR-γ2 gene cannot be considered as a risk factor for NAFLD in the Iranian population.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , PPAR gama/genética , Polimorfismo de Nucleotídeo Único/genética , Feminino , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Fatores de Risco
17.
Turk J Med Sci ; 49(4): 1089-1094, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31390852

RESUMO

Background/aim: Environmental and genetic factors may play a major role in the development of nonalcoholic fatty liver disease (NAFLD) among people with obesity and type 2 diabetes mellitus. Based on the fact that PGC-1α, as the protein encoded by the PPARGC1A gene, plays a key role in energy metabolism pathways, it has been hypothesized that polymorphisms within the PPARGC1Agene may be associated with increased risks of NAFLD. Thus, this study was designed to evaluate the Gly482Ser polymorphism (rs8192678) within the PPARGC1A gene and its association with the increased risk of NAFLD in Iranian patients with type 2 diabetes. Materials and methods: A total of 145 NAFLD patients with a history of type 2 diabetes and 145 healthy control subjects were included in the study. Gly482Ser polymorphism genotyping was done using the amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) technique. Results: The results showed a significant difference between the PPARGC1A Gly482Serpolymorphism in NAFLD patients and the healthy controls. Accordingly, the AA genotype and A allele were increased in the NAFLD patients when compared to the healthy controls. However, no significant correlation was observed between the Gly482Ser polymorphism and the physiological and biochemical parameters. Conclusion: Based on the results, the AA genotype, which is associated with the insertion of Ser, can be considered as a risk factor for the development of NAFLD in Iranian patients with diabetes type 2.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Hepatopatia Gordurosa não Alcoólica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Adulto , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença/genética , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único/genética
18.
Cell Biol Int ; 41(12): 1335-1344, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28833847

RESUMO

Transcriptional master regulators like Sox2 and Oct4, which are expressed in various human tumors, have been shown to cause tumor growth promotion as well as epithelial dysplasia by means of interfering with progenitor cell differentiation. In order to investigate the potential of Sox2-Oct4 transcription factor decoy (TFD) strategy for differentiation therapy, mouse embryonic stem cells (mESCs) were used in this study as a model of cancer stem cells (CSCs). Sox2-Oct4 complex decoy ODNs (cd-ODNs) were designed according to their elements in the promoter region of Sox2 gene. DNA-protein interactions between decoy ODNs and their corresponding proteins were examined by electrophoretic mobility shift assay (EMSA). Then, decoy and scrambled ODNs were transfected into mESCs with lipofectamine under 2 inhibitors (2i) conditions. Fluorescence and confocal microscopy, cell viability, cell cycle and apoptosis analysis, alkaline phosphatase, embryoid body formation assay, and real-time PCR were used to conduct further investigations. EMSA data showed that Sox2-Oct4 decoy ODNs bound specifically to their recombinant proteins. The results revealed that the synthesized complex decoy can concomitantly target Sox2 and Oct4, which subsequently represses the stemness properties of mESCs compared to controls through decreasing cell viability, arresting cell cycle in G0 /G1 phases, inducing apoptosis, and modulating differentiation in mESCs despite the presence of 2i/LIF in cell culture. While cd-ODN strategy seems to offer great promise for cancer therapy, further studies are still required to put this powerful investigative tool in practice for a wide range of human cancers.


Assuntos
Células-Tronco Embrionárias Murinas/citologia , Fator 3 de Transcrição de Octâmero/antagonistas & inibidores , Oligodesoxirribonucleotídeos/farmacologia , Fatores de Transcrição SOXB1/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oligodesoxirribonucleotídeos/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
20.
Sci Rep ; 14(1): 15116, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956424

RESUMO

Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.


Assuntos
Caspase 9 , Movimento Celular , Organoides , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Caspase 9/metabolismo , Movimento Celular/efeitos dos fármacos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Metástase Neoplásica , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Invasividade Neoplásica , Técnicas de Cocultura , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Células MDA-MB-231
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA