Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 149(2): 307-21, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500798

RESUMO

Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, and prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 inhibition, but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , MAP Quinase Quinase 1/antagonistas & inibidores , Proteínas Quinases/genética , Proteoma/análise , Animais , Antineoplásicos/uso terapêutico , Benzenossulfonatos/uso terapêutico , Benzimidazóis/uso terapêutico , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Niacinamida/análogos & derivados , Compostos de Fenilureia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/uso terapêutico , Receptores Proteína Tirosina Quinases/genética , Sorafenibe
2.
Nat Chem Biol ; 19(2): 230-238, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36302899

RESUMO

Small-molecule tools have enabled mechanistic investigations and therapeutic targeting of the protein kinase-like (PKL) superfamily. However, such tools are still lacking for many PKL members, including the highly conserved and disease-related UbiB family. Here, we sought to develop and characterize an inhibitor for the archetypal UbiB member COQ8, whose function is essential for coenzyme Q (CoQ) biosynthesis. Guided by crystallography, activity assays and cellular CoQ measurements, we repurposed the 4-anilinoquinoline scaffold to selectively inhibit human COQ8A in cells. Our chemical tool promises to lend mechanistic insights into the activities of these widespread and understudied proteins and to offer potential therapeutic strategies for human diseases connected to their dysfunction.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Ubiquinona/farmacologia , Ubiquinona/química , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 298(2): 101525, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34958800

RESUMO

Pharmacological inhibition of protein kinases induces adaptive reprogramming of tumor cell regulatory networks by altering expression of genes that regulate signaling, including protein kinases. Adaptive responses are dependent on transcriptional changes resulting from remodeling of enhancer and promoter landscapes. Enhancer and promoter remodeling in response to targeted kinase inhibition is controlled by changes in open chromatin state and by activity of specific transcription factors, such as c-MYC. This review focuses on the dynamic plasticity of protein kinase expression of the tumor cell kinome and the resulting adaptive resistance to targeted kinase inhibition. Plasticity of the functional kinome has been shown in patient window trials where triple-negative and human epidermal growth factor receptor 2-positive breast cancer patient tumors were characterized by RNAseq after biopsies before and after 1 week of therapy. The expressed kinome changed dramatically during drug treatment, and these changes in kinase expression were shown in cell lines and xenografts in mice to be correlated with adaptive tumor cell drug resistance. The dynamic transcriptional nature of the kinome also differs for inhibitors targeting different kinase signaling pathways (e.g., BRAF-MEK-ERK versus PI3K-AKT) that are commonly activated in cancers. Heterogeneity arising from differences in gene regulation and mutations represents a challenge to therapeutic durability and prevention of clinical drug resistance with drug-tolerant tumor cell populations developing and persisting through treatment. We conclude that understanding the heterogeneity of kinase expression at baseline and in response to therapy is imperative for development of combinations and timing intervals of therapies making interventions durable.


Assuntos
Neoplasias da Mama , Montagem e Desmontagem da Cromatina , Inibidores de Proteínas Quinases , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases
4.
J Biol Chem ; 297(4): 101128, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461089

RESUMO

Targeted strategies against specific driver molecules of cancer have brought about many advances in cancer treatment since the early success of the first small-molecule inhibitor Gleevec. Today, there are a multitude of targeted therapies approved by the Food and Drug Administration for the treatment of cancer. However, the initial efficacy of virtually every targeted treatment is often reversed by tumor resistance to the inhibitor through acquisition of new mutations in the target molecule, or reprogramming of the epigenome, transcriptome, or kinome of the tumor cells. At the core of this clinical problem lies the assumption that targeted treatments will only be efficacious if the inhibitors are used at their maximum tolerated doses. Such aggressive regimens create strong selective pressure on the evolutionary progression of the tumor, resulting in resistant cells. High-dose single agent treatments activate alternative mechanisms that bypass the inhibitor, while high-dose combinatorial treatments suffer from increased toxicity resulting in treatment cessation. Although there is an arsenal of targeted agents being tested clinically and preclinically, identifying the most effective combination treatment plan remains a challenge. In this review, we discuss novel targeted strategies with an emphasis on the recent cross-disciplinary studies demonstrating that it is possible to achieve antitumor efficacy without increasing toxicity by adopting low-dose multitarget approaches to treatment of cancer and metastasis.


Assuntos
Mesilato de Imatinib/uso terapêutico , Proteínas de Neoplasias , Neoplasias , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Animais , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia
5.
Proc Natl Acad Sci U S A ; 116(33): 16541-16550, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346082

RESUMO

Non-Hodgkin lymphomas (NHLs) make up the majority of lymphoma diagnoses and represent a very diverse set of malignancies. We sought to identify kinases uniquely up-regulated in different NHL subtypes. Using multiplexed inhibitor bead-mass spectrometry (MIB/MS), we found Tyro3 was uniquely up-regulated and important for cell survival in primary effusion lymphoma (PEL), which is a viral lymphoma infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Tyro3 was also highly expressed in PEL cell lines as well as in primary PEL exudates. Based on this discovery, we developed an inhibitor against Tyro3 named UNC3810A, which hindered cell growth in PEL, but not in other NHL subtypes where Tyro3 was not highly expressed. UNC3810A also significantly inhibited tumor progression in a PEL xenograft mouse model that was not seen in a non-PEL NHL model. Taken together, our data suggest Tyro3 is a therapeutic target for PEL.


Assuntos
Linfoma não Hodgkin/enzimologia , Linfoma de Efusão Primária/enzimologia , Terapia de Alvo Molecular , Proteoma/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/virologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
6.
Hum Mol Genet ; 28(4): 572-583, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30335132

RESUMO

Schwannomas are common, highly morbid and medically untreatable tumors that can arise in patients with germ line as well as somatic mutations in neurofibromatosis type 2 (NF2). These mutations most commonly result in the loss of function of the NF2-encoded protein, Merlin. Little is known about how Merlin functions endogenously as a tumor suppressor and how its loss leads to oncogenic transformation in Schwann cells (SCs). Here, we identify nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-inducing kinase (NIK) as a potential drug target driving NF-κB signaling and Merlin-deficient schwannoma genesis. Using a genomic approach to profile aberrant tumor signaling pathways, we describe multiple upregulated NF-κB signaling elements in human and murine schwannomas, leading us to identify a caspase-cleaved, proteasome-resistant NIK kinase domain fragment that amplifies pathogenic NF-κB signaling. Lentiviral-mediated transduction of this NIK fragment into normal SCs promotes proliferation, survival, and adhesion while inducing schwannoma formation in a novel in vivo orthotopic transplant model. Furthermore, we describe an NF-κB-potentiated hepatocyte growth factor (HGF) to MET proto-oncogene receptor tyrosine kinase (c-Met) autocrine feed-forward loop promoting SC proliferation. These innovative studies identify a novel signaling axis underlying schwannoma formation, revealing new and potentially druggable schwannoma vulnerabilities with future therapeutic potential.


Assuntos
Neurilemoma/genética , Neurofibromatose 2/genética , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Comunicação Autócrina/genética , Carcinogênese/genética , Caspase 1/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Humanos , Camundongos , Terapia de Alvo Molecular , NF-kappa B/genética , Neurilemoma/complicações , Neurilemoma/tratamento farmacológico , Neurilemoma/patologia , Neurofibromatose 2/complicações , Neurofibromatose 2/tratamento farmacológico , Neurofibromatose 2/patologia , Complexo de Endopeptidases do Proteassoma/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-met/genética , Células de Schwann , Transdução de Sinais/genética , Quinase Induzida por NF-kappaB
7.
Annu Rev Pharmacol Toxicol ; 58: 209-229, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28934561

RESUMO

Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change-often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell-like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.


Assuntos
Epigênese Genética/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
8.
Anal Chem ; 93(41): 13791-13799, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34606255

RESUMO

Parallel reaction monitoring (PRM) has emerged as a popular approach for targeted protein quantification. With high ion utilization efficiency and first-in-class acquisition speed, the timsTOF Pro provides a powerful platform for PRM analysis. However, sporadic chromatographic drift in peptide retention time represents a fundamental limitation for the reproducible multiplexing of targets across PRM acquisitions. Here, we present PRM-LIVE, an extensible, Python-based acquisition engine for the timsTOF Pro, which dynamically adjusts detection windows for reproducible target scheduling. In this initial implementation, we used iRT peptides as retention time standards and demonstrated reproducible detection and quantification of 1857 tryptic peptides from the cell lysate in a 60 min PRM-LIVE acquisition. As an application in functional proteomics, we use PRM-LIVE in an activity-based protein profiling platform to assess binding selectivity of small-molecule inhibitors against 220 endogenous human kinases.


Assuntos
Espectrometria de Mobilidade Iônica , Proteômica , Humanos , Espectrometria de Massas , Peptídeos , Proteínas
9.
PLoS Biol ; 16(12): e3000067, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532236

RESUMO

This Formal Comment responds to a recent Meta-Research Article by identifying initiatives that are already in place for funding risky exploratory research that illuminate mysteries of the dark genome.


Assuntos
Genoma , Pesquisa
10.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641454

RESUMO

A focused series of substituted 4H-1,2,6-thiadiazin-4-ones was designed and synthesized to probe the anti-cancer properties of this scaffold. Insights from previous kinase inhibitor programs were used to carefully select several different substitution patterns. Compounds were tested on bladder, prostate, pancreatic, breast, chordoma, and lung cancer cell lines with an additional skin fibroblast cell line as a toxicity control. This resulted in the identification of several low single digit micro molar compounds with promising therapeutic windows, particularly for bladder and prostate cancer. A number of key structural features of the 4H-1,2,6-thiadiazin-4-one scaffold are discussed that show promising scope for future improvement.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Tiadiazinas/química , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Mol Cell Proteomics ; 16(4 suppl 1): S263-S276, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28237943

RESUMO

Human cytomegalovirus (HCMV) is a significant cause of disease in immune-compromised adults and immune naïve newborns. No vaccine exists to prevent HCMV infection, and current antiviral therapies have toxic side effects that limit the duration and intensity of their use. There is thus an urgent need for new strategies to treat HCMV infection. Repurposing existing drugs as antivirals is an attractive approach to limit the time and cost of new antiviral drug development. Virus-induced changes in infected cells are often driven by changes in cellular kinase activity, which led us to hypothesize that defining the complement of kinases (the kinome), whose abundance or expression is altered during infection would identify existing kinase inhibitors that could be repurposed as new antivirals. To this end, we applied a kinase capture technique, multiplexed kinase inhibitor bead-mass spectrometry (MIB-MS) kinome, to quantitatively measure perturbations in >240 cellular kinases simultaneously in cells infected with a laboratory-adapted (AD169) or clinical (TB40E) HCMV strain. MIB-MS profiling identified time-dependent increases and decreases in MIB binding of multiple kinases including cell cycle kinases, receptor tyrosine kinases, and mitotic kinases. Based on the kinome data, we tested the antiviral effects of kinase inhibitors and other compounds, several of which are in clinical use or development. Using a novel flow cytometry-based assay and a fluorescent reporter virus we identified three compounds that inhibited HCMV replication with IC50 values of <1 µm, and at doses that were not toxic to uninfected cells. The most potent inhibitor of HCMV replication was OTSSP167 (IC50 <1.2 nm), a MELK inhibitor, blocked HCMV early gene expression and viral DNA accumulation, resulting in a >3 log decrease in virus replication. These results show the utility of MIB-MS kinome profiling for identifying existing kinase inhibitors that can potentially be repurposed as novel antiviral drugs.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Células Cultivadas , Citomegalovirus/metabolismo , Reposicionamento de Medicamentos , Humanos , Espectrometria de Massas/métodos , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
12.
Biochem Biophys Res Commun ; 496(1): 205-211, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29309787

RESUMO

The kinase MEKK2 (MAP3K2) activates the MEK5/ERK5 cell signaling pathway and may play an important role in tumor growth and metastasis. Thus, MEKK2 may represent a novel kinase target for cancer. In order to identify inhibitors of MEKK2, we screened a library of compounds using a high throughput MEKK2 intrinsic ATPase enzyme assay. We identified two hits with validated structures and confirmed activity in the primary assay (IC50 values = 322 nM and 7.7 µM) and two orthogonal MEKK2 biochemical assays. Compound 1, the more potent hit, was the subject of further investigation. Limited structure-activity relationship (SAR) studies were performed on this iminocoumarin hit which resulted in ≥20-fold more potent analogs (e.g. 8 and 16 nM IC50). Two analogs had improved selectivity in a 50-member kinase profiling panel compared to the hit. These studies suggested that substitutions around the phenoxy ring of this scaffold can impart improved potency and selectivity for MEKK2. Analog Compound 1s (16 nM IC50) was further verified by external testing to inhibit MEKK2 and MEKK3 with similar potencies. Compound 1s displayed activity in cell-based assays in which it inhibited ERK5 pathway activation in cells and inhibited cell migration in a scratch assay. Thus, we have identified a scaffold that has promising potential to be developed into a highly selective and potent inhibitor of MEKK2. Information from these SAR studies provides specific guidance for the future design of MEKK2 inhibitor probes.


Assuntos
Cumarínicos/química , Cumarínicos/metabolismo , MAP Quinase Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase Quinase 2/metabolismo , Mapeamento de Interação de Proteínas/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Células Cultivadas , Cumarínicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Inibidores de Proteínas Quinases/administração & dosagem
13.
J Cell Physiol ; 232(1): 53-60, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27186656

RESUMO

Protein kinases are highly tractable targets for the treatment of many cancers including breast cancer, due to their essential role in tumor cell proliferation and survival. Sequencing of the breast cancer genome and transcriptome has defined breast cancer as a heterogeneous disease that is classified into five molecular subtypes: luminal A, luminal B, HER2-enriched, basal-like, and claudin-low. Each subtype displays a unique expression profile of protein kinases that can be targeted by small molecule kinase inhibitors or biologics. An understanding of genomic changes, including mutations or copy number variations, for specific protein kinases and dependencies on kinases across breast cancer subtypes is allowing for a more rational design of targeted breast cancer therapies. While specific kinase inhibitors have had success in the clinic, including the CDK4/6 inhibitor palbociclib in combination with aromatase inhibitors in luminal breast cancer, patients often become resistant to treatment. An understanding of the mechanisms allowing cells to bypass targeted kinase inhibition has led to the development of combination therapies that are more durable in pre-clinical studies. However, the heterogeneity of resistance mechanisms and rapid adaptability of the kinome through feedback regulation greatly inhibit the long-term efficacy of combination kinase inhibitor therapies. It is becoming apparent that epigenetic inhibitors, such as HDAC and BET bromodomain inhibitors can block the transcriptional adaptability of tumor cells to kinase inhibitors and prevent the onset of resistance. Such novel combination therapies are currently showing promise in preclinical studies to markedly increase the durability of kinase inhibitors in breast cancer. J. Cell. Physiol. 232: 53-60, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA/genética , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Animais , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Receptor ErbB-2/genética
14.
J Cell Biochem ; 118(11): 3595-3606, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28464261

RESUMO

The kinase enzymes within a cell, known collectively as the kinome, play crucial roles in many signaling pathways, including survival, motility, differentiation, stress response, and many more. Aberrant signaling through kinase pathways is often linked to cancer, among other diseases. A major area of scientific research involves understanding the relationships between kinases, their targets, and how the kinome adapts to perturbations of the cellular system. This review will discuss many of the current and developing methods for studying kinase activity, and evaluate their applications, advantages, and disadvantages. J. Cell. Biochem. 118: 3595-3606, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas de Neoplasias/análise , Neoplasias/enzimologia , Proteínas Quinases/análise , Animais , Humanos
15.
Cancer Cell Int ; 16: 26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042159

RESUMO

BACKGROUND: Obesity is associated with an aggressive subtype of breast cancer called basal-like breast cancer (BBC). BBC has no targeted therapies, making the need for mechanistic insight urgent. Reducing adiposity in adulthood can lower incidence of BBC in humans. Thus, this study investigated whether a dietary intervention to reduce adiposity prior to tumor onset would reverse HFD-induced BBC. METHODS: Adult C3(1)-Tag mice were fed a low or high fat diet (LFD, HFD), and an obese group initially exposed to HFD was then switched to LFD to induce weight loss. A subset of mice was sacrificed prior to average tumor latency to examine unaffected mammary gland. Latency, tumor burden and progression was evaluated for effect of diet exposure. Physiologic, histology and proteomic analysis was undertaken to determine mechanisms regulating obesity and weight loss in BBC risk. Statistical analysis included Kaplan-Meier and log rank analysis to investigate latency. Student's t tests or ANOVA compared variables. RESULTS: Mice that lost weight displayed significantly delayed latency compared to mice fed HFD, with latency matching those on LFD. Plasma leptin concentrations significantly increased with adiposity, were reduced to control levels with weight loss, and negatively correlated with tumor latency. HFD increased atypical ductal hyperplasia and ductal carcinoma in situ in mammary gland isolated prior to mean latency-a phenomenon that was lost in mice induced to lose weight. Importantly, kinome analysis revealed that weight loss reversed HFD-upregulated activity of PKC-α, PKD1, PKA, and MEK3 and increased AMPKα activity in unaffected mammary glands isolated prior to tumor latency. CONCLUSIONS: Weight loss prior to tumor onset protected against the effects of HFD on latency and pre-neoplastic lesions including atypical ductal hyperplasia and DCIS. Using innovative kinomics, multiple kinases upstream of MAPK/P38α were demonstrated to be activated by HFD-induced weight gain and reversed with weight loss, providing novel targets in obesity-associated BBC. Thus, the HFD-exposed microenvironment that promoted early tumor onset was reprogrammed by weight loss and the restoration of a lean phenotype. Our work contributes to an understanding of underlying mechanisms associated with tumor and normal mammary changes that occur with weight loss.

16.
Mol Cell Proteomics ; 13(5): 1184-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24556848

RESUMO

Post-translational modifications of proteins regulate diverse cellular functions, with mounting evidence suggesting that hierarchical cross-talk between distinct modifications may fine-tune cellular responses. For example, in apoptosis, caspases promote cell death via cleavage of key structural and enzymatic proteins that in some instances is inhibited by phosphorylation near the scissile bond. In this study, we systematically investigated how protein phosphorylation affects susceptibility to caspase cleavage using an N-terminomic strategy, namely, a modified terminal amino isotopic labeling of substrates (TAILS) workflow, to identify proteins for which caspase-catalyzed cleavage is modulated by phosphatase treatment. We validated the effects of phosphorylation on three of the identified proteins and found that Yap1 and Golgin-160 exhibit decreased cleavage when phosphorylated, whereas cleavage of MST3 was promoted by phosphorylation. Furthermore, using synthetic peptides we systematically examined the influence of phosphoserine throughout the entirety of caspase-3, -7, and -8 recognition motifs and observed a general inhibitory effect of phosphorylation even at residues considered outside the classical consensus motif. Overall, our work demonstrates a role for phosphorylation in controlling caspase-mediated cleavage and shows that N-terminomic strategies can be tailored to study cross-talk between phosphorylation and proteolysis.


Assuntos
Caspases/química , Caspases/metabolismo , Peptídeos/metabolismo , Proteômica/métodos , Células HeLa , Humanos , Marcação por Isótopo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfoproteínas/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise
17.
Biochem Biophys Res Commun ; 463(4): 888-93, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26056008

RESUMO

The kinase MEKK2 (MAP3K2) may play an important role in tumor growth and metastasis for several cancer types. Thus, targeting MEKK2 may represent a novel strategy for developing more effective therapies for cancer. In order to identify small molecules with MEKK2 inhibitory activity, we screened a collection of known kinase inhibitors using a high throughput MEKK2 intrinsic ATPase enzyme assay and confirmed activity of the most potent hits with this primary assay. We also confirmed activities of these known kinase inhibitors with an MEKK2 transphosphorylation slot blot assay using MKK6 as a substrate. We observed a good correlation in potencies between the two orthogonal MEKK2 kinase activity assay formats for this set of inhibitors. We report that ponatinib, AT9283, AZD7762, JNJ-7706621, PP121 and hesperadin had potent MEKK2 enzyme inhibitory activities ranging from 4.7 to 60 nM IC50. Ponatinib is an FDA-approved drug that potently inhibited MEKK2 enzyme activity with IC50 values of 10-16 nM. AT9283 is currently in clinical trials and produced MEKK2 IC50 values of 4.7-18 nM. This set of known kinase inhibitors represents some of the most potent in vitro MEKK2 inhibitors reported to date and may be useful as research tools. Although these compounds are not selective for MEKK2, the structures of these compounds give insight into pharmacophores that potently inhibit MEKK2 and could be used as initial leads to design highly selective inhibitors of MEKK2.


Assuntos
Imidazóis/farmacologia , MAP Quinase Quinase Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Animais , Humanos , Concentração Inibidora 50 , Fosforilação
18.
Nature ; 461(7260): 99-103, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19693013

RESUMO

The GTPases Rac1, RhoA and Cdc42 act together to control cytoskeleton dynamics. Recent biosensor studies have shown that all three GTPases are activated at the front of migrating cells, and biochemical evidence suggests that they may regulate one another: Cdc42 can activate Rac1 (ref. 8), and Rac1 and RhoA are mutually inhibitory. However, their spatiotemporal coordination, at the seconds and single-micrometre dimensions typical of individual protrusion events, remains unknown. Here we examine GTPase coordination in mouse embryonic fibroblasts both through simultaneous visualization of two GTPase biosensors and using a 'computational multiplexing' approach capable of defining the relationships between multiple protein activities visualized in separate experiments. We found that RhoA is activated at the cell edge synchronous with edge advancement, whereas Cdc42 and Rac1 are activated 2 micro-m behind the edge with a delay of 40 s. This indicates that Rac1 and RhoA operate antagonistically through spatial separation and precise timing, and that RhoA has a role in the initial events of protrusion, whereas Rac1 and Cdc42 activate pathways implicated in reinforcement and stabilization of newly expanded protrusions.


Assuntos
Extensões da Superfície Celular/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Técnicas Biossensoriais , Movimento Celular , Forma Celular , Embrião de Mamíferos/citologia , Ativação Enzimática , Fibroblastos/citologia , Fibroblastos/enzimologia , Camundongos , Neuropeptídeos/metabolismo , Transporte Proteico , Fatores de Tempo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP , Proteína rhoA de Ligação ao GTP
19.
Biochem Soc Trans ; 42(4): 765-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25109955

RESUMO

Cancer cells are dependent on protein kinase signalling networks to drive proliferation and to promote survival, and, accordingly, kinases continue to represent a major target class for development of anti-cancer therapeutics. Kinase inhibitors nevertheless have yielded only limited success with many different malignancies due to the inability of single agents to sustain a durable clinical response. Cancer cell kinomes are highly resilient and able to bypass targeted kinase inhibition, leading to tumour resistance. A novel platform has been developed to analyse the activity of the expressed kinome using MIBs (multiplexed inhibitor beads), which consist of Sepharose beads with covalently immobilized inhibitors that preferentially bind activated kinases. Coupling MIB capture with MS (MIB-MS) allows simultaneous determination of the activity of over 75% of the expressed kinome, facilitating high-throughput assessment of adaptive kinase responses resulting from deregulated feedback and feedforward regulatory mechanisms. The adaptive response frequently involves transcriptional up-regulation of specific kinases that allow bypass of the targeted kinase. Understanding how the kinome reprogrammes to targeted kinase inhibition will allow novel therapeutic strategies to be developed for durable clinical responses.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Humanos , Espectrometria de Massas , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica
20.
Biochem J ; 450(1): 1-8, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23343193

RESUMO

Recent advances in proteomics have facilitated the analysis of the kinome 'en masse'. What these studies have revealed is a surprisingly dynamic network of kinase responses to highly selective kinase inhibitors, thereby illustrating the complex biological responses to these small molecules. Moreover these studies have identified key transcription factors, such as c-Myc and FOXO (forkhead box O), that play pivotal roles in kinome reprogramming in cancer cells. Since many kinase inhibitors fail despite a high efficacy of blocking their intended targets, elucidating kinome changes at a more global level will be essential to understanding the mechanisms of kinase inhibitor pharmacology. The development of technologies to study the kinome, as well as examples of kinome resilience and reprogramming, will be discussed in the present review.


Assuntos
Proteínas Quinases/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/química , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA