Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36971361

RESUMO

The development and function of male gametes is dependent on a dynamic microtubule network, yet how this is regulated remains poorly understood. We have recently shown that microtubule severing, via the action of the meiotic AAA ATPase protein clade, plays a crucial role in this process. Here, we sought to elucidate the roles of spastin, an as-yet-unexplored member of this clade in spermatogenesis. Using a SpastKO/KO mouse model, we reveal that spastin loss resulted in a complete loss of functional germ cells. Spastin plays a crucial role in the assembly and function of the male meiotic spindle. Consistent with meiotic failure, round spermatid nuclei were enlarged, indicating aneuploidy, but were still able to enter spermiogenesis. During spermiogenesis, we observed extreme abnormalities in manchette structure, acrosome biogenesis and, commonly, a catastrophic loss of nuclear integrity. This work defines an essential role for spastin in regulating microtubule dynamics during spermatogenesis, and is of potential relevance to individuals carrying spastin variants and to the medically assisted reproductive technology industry.


Assuntos
Acrossomo , Microtúbulos , Animais , Camundongos , Masculino , Espastina/genética , Acrossomo/metabolismo , Microtúbulos/metabolismo , Espermatogênese/genética , Meiose/genética
2.
Mol Biol Evol ; 36(5): 919-929, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768139

RESUMO

Insect odorant receptor (Or) genes determine the responses of sensory neurons that mediate critical behaviors. The Drosophila melanogaster Or22 locus represents an interesting example of molecular evolution, with high levels of sequence divergence and copy number variation between D. melanogaster and other Drosophila species, and a corresponding high level of variability in the responses of the neuron it controls, ab3A. However, the link between Or22 molecular and functional diversity has not been established. Here, we show that several naturally occurring Or22 variants generate major shifts in neuronal response properties. We determine the molecular changes that underpin these response shifts, one of which represents a chimeric gene variant previously suggested to be under natural selection. In addition, we show that several alternative molecular genetic mechanisms have evolved for ensuring that where there is more than one gene copy at this locus, only one functional receptor is generated. Our data thus provide a causal link between the striking levels of phenotypic neuronal response variation found in natural populations of D. melanogaster and genetic variation at the Or22 locus. Since neuronal responses govern animal behavior, we predict that Or22 may be a key player in underlying one or more olfactory-driven behaviors of significant adaptive importance.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolução Molecular , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/genética , Animais , Feminino , Variação Genética , Proteínas de Insetos/genética , Masculino , Fenótipo
3.
Am J Hum Genet ; 100(1): 128-137, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017372

RESUMO

Early B cell factor 3 (EBF3) is a member of the highly evolutionarily conserved Collier/Olf/EBF (COE) family of transcription factors. Prior studies on invertebrate and vertebrate animals have shown that EBF3 homologs are essential for survival and that loss-of-function mutations are associated with a range of nervous system developmental defects, including perturbation of neuronal development and migration. Interestingly, aristaless-related homeobox (ARX), a homeobox-containing transcription factor critical for the regulation of nervous system development, transcriptionally represses EBF3 expression. However, human neurodevelopmental disorders related to EBF3 have not been reported. Here, we describe three individuals who are affected by global developmental delay, intellectual disability, and expressive speech disorder and carry de novo variants in EBF3. Associated features seen in these individuals include congenital hypotonia, structural CNS malformations, ataxia, and genitourinary abnormalities. The de novo variants affect a single conserved residue in a zinc finger motif crucial for DNA binding and are deleterious in a fly model. Our findings indicate that mutations in EBF3 cause a genetic neurodevelopmental syndrome and suggest that loss of EBF3 function might mediate a subset of neurologic phenotypes shared by ARX-related disorders, including intellectual disability, abnormal genitalia, and structural CNS malformations.


Assuntos
Mutação , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas/genética , Ataxia/genética , Sistema Nervoso Central/anormalidades , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Feminino , Genitália/anormalidades , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Hipotonia Muscular/genética , Distúrbios da Fala/genética , Síndrome , Dedos de Zinco/genética
4.
Semin Cell Dev Biol ; 72: 163-170, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28506893

RESUMO

The Membrane Attack Complex Perforin-like/Cholesterol-Dependent Cytolysin (MACPF) superfamily is an ancient and biologically diverse group of proteins that are best known for pore-forming roles in mammalian immunity and bacterial pathogenesis. Intriguingly, however, some eukaryotic proteins which contain the MACPF domain that defines this family do not act in attack or defence, and instead have distinct developmental functions. It remains unclear whether these proteins function via pore formation or have a different mechanism of action. Of these, by far the best characterised is Torso-like (Tsl), the only MACPF member that has been identified in the fruit fly, Drosophila melanogaster. While it has long been known to have a role in embryonic patterning, recent studies have shown that Tsl in fact has multiple roles in development. As such, it presents an excellent opportunity to investigate how the MACPF domain functions in a developmental context. Here, we review what is known about Tsl in Drosophila and other insects, and discuss the potential molecular mechanism by which Tsl and thus other developmental MACPF proteins may function.


Assuntos
Colesterol/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Citotoxinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Perforina/metabolismo , Animais , Complexo de Ataque à Membrana do Sistema Complemento/genética , Citotoxinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Perforina/genética , Transdução de Sinais/genética
5.
Biochem Soc Trans ; 47(3): 801-810, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31209154

RESUMO

Members of the membrane attack complex/perforin-like (MACPF) protein superfamily have long captured interest because of their unique ability to assemble into large oligomeric pores on the surfaces of cells. The best characterised of these act in vertebrate immunity where they function to deliver pro-apoptotic factors or induce the cytolysis and death of targeted cells. Less appreciated, however, is that rather than causing cell death, MACPF proteins have also evolved to control cellular signalling pathways and influence developmental programmes such as pattern formation and neurogenesis. Torso-like (Tsl) from the fruit fly Drosophila, for example, functions to localise the activity of a growth factor for patterning its embryonic termini. It remains unclear whether these developmental proteins employ an attenuated form of the classical MACPF lytic pore, or if they have evolved to function via alternative mechanisms of action. In this minireview, we examine the evidence that links pore-forming MACPF proteins to the control of growth factor and cytokine signalling. We will then attempt to reconcile how the MACPF domain may have been repurposed during evolution for developmental events rather than cell killing.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais , Animais , Drosophila/metabolismo , Humanos
6.
Int J Mol Sci ; 21(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888080

RESUMO

Cell-to-cell communication mediates a plethora of cellular decisions and behaviors that are crucial for the correct and robust development of multicellular organisms. Many of these signals are encoded in secreted hormones or growth factors that bind to and activate cell surface receptors, to transmit the cue intracellularly. One of the major superfamilies of cell surface receptors are the receptor tyrosine kinases (RTKs). For nearly half a century RTKs have been the focus of intensive study due to their ability to alter fundamental aspects of cell biology, such as cell proliferation, growth, and shape, and because of their central importance in diseases such as cancer. Studies in model organisms such a Drosophila melanogaster have proved invaluable for identifying new conserved RTK pathway components, delineating their contributions, and for the discovery of conserved mechanisms that control RTK-signaling events. Here we provide a brief overview of the RTK superfamily and the general mechanisms used in their regulation. We further highlight the functions of several RTKs that govern distinct cell-fate decisions in Drosophila and explore how their activities are developmentally controlled.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Comunicação Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Transdução de Sinais
7.
PLoS Genet ; 10(3): e1004209, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24651716

RESUMO

The olfactory systems of insects are fundamental to all aspects of their behaviour, and insect olfactory receptor neurons (ORNs) exhibit exquisite specificity and sensitivity to a wide range of environmental cues. In Drosophila melanogaster, ORN responses are determined by three different receptor families, the odorant (Or), ionotropic-like (IR) and gustatory (Gr) receptors. However, the precise mechanisms of signalling by these different receptor families are not fully understood. Here we report the unexpected finding that the type 4 P-type ATPase phospholipid transporter dATP8B, the homologue of a protein associated with intrahepatic cholestasis and hearing loss in humans, is crucial for Drosophila olfactory responses. Mutations in dATP8B severely attenuate sensitivity of odorant detection specifically in Or-expressing ORNs, but do not affect responses mediated by IR or Gr receptors. Accordingly, we find dATP8B to be expressed in ORNs and localised to the dendritic membrane of the olfactory neurons where signal transduction occurs. Localisation of Or proteins to the dendrites is unaffected in dATP8B mutants, as is dendrite morphology, suggesting instead that dATP8B is critical for Or signalling. As dATP8B is a member of the phospholipid flippase family of ATPases, which function to determine asymmetry in phospholipid composition between the outer and inner leaflets of plasma membranes, our findings suggest a requirement for phospholipid asymmetry in the signalling of a specific family of chemoreceptor proteins.


Assuntos
Proteínas de Drosophila/genética , Neurônios Receptores Olfatórios/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Receptores Odorantes/genética , Olfato/genética , Animais , Células Quimiorreceptoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Neurônios Receptores Olfatórios/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptores Odorantes/metabolismo , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 110(36): 14688-92, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959885

RESUMO

Activation of the Drosophila receptor tyrosine kinase Torso (Tor) only at the termini of the embryo is achieved by the localized expression of the maternal gene Torso-like (Tsl). Tor has a second function in the prothoracic gland as the receptor for prothoracicotropic hormone (PTTH) that initiates metamorphosis. Consistent with the function of Tor in this tissue, Tsl also localizes to the prothoracic gland and influences developmental timing. Despite these commonalities, in our studies of Tsl we unexpectedly found that tsl and tor have opposing effects on body size; tsl null mutants are smaller than normal, rather than larger as would be expected if the PTTH/Tor pathway was disrupted. We further found that whereas both genes regulate developmental timing, tsl does so independently of tor. Although tsl null mutants exhibit a similar length delay in time to pupariation to tor mutants, in tsl:tor double mutants this delay is strikingly enhanced. Thus, loss of tsl is additive rather than epistatic to loss of tor. We also find that phenotypes generated by ectopic PTTH expression are independent of tsl. Finally, we show that a modified form of tsl that can rescue developmental timing cannot rescue terminal patterning, indicating that Tsl can function via distinct mechanisms in different contexts. We conclude that Tsl is not just a specialized cue for Torso signaling but also acts independently of PTTH/Tor in the control of body size and the timing of developmental progression. These data highlight surprisingly diverse developmental functions for this sole Drosophila member of the perforin-like superfamily.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Receptores Proteína Tirosina Quinases/genética , Análise de Variância , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Tamanho Corporal/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Hibridização In Situ , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Larva/química , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Lineares , Masculino , Metamorfose Biológica/genética , Mutação , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Tempo
9.
BMC Struct Biol ; 14: 14, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24758516

RESUMO

BACKGROUND: The Drosophila melanogaster Serpin 42 Da gene (previously Serpin 4) encodes a serine protease inhibitor that is capable of remarkable functional diversity through the alternative splicing of four different reactive centre loop exons. Eight protein isoforms of Serpin 42 Da have been identified to date, targeting the protease inhibitor to both different proteases and cellular locations. Biochemical and genetic studies suggest that Serpin 42 Da inhibits target proteases through the classical serpin 'suicide' inhibition mechanism, however the crystal structure of a representative Serpin 42 Da isoform remains to be determined. RESULTS: We report two high-resolution crystal structures of Serpin 42 Da representing the A/B isoforms in the cleaved conformation, belonging to two different space-groups and diffracting to 1.7 Å and 1.8 Å. Structural analysis reveals the archetypal serpin fold, with the major elements of secondary structure displaying significant homology to the vertebrate serpin, neuroserpin. Key residues known to have central roles in the serpin inhibitory mechanism are conserved in both the hinge and shutter regions of Serpin 42 Da. Furthermore, these structures identify important conserved interactions that appear to be of crucial importance in allowing the Serpin 42 Da fold to act as a versatile template for multiple reactive centre loops that have different sequences and protease specificities. CONCLUSIONS: In combination with previous biochemical and genetic studies, these structures confirm for the first time that the Serpin 42 Da isoforms are typical inhibitory serpin family members with the conserved serpin fold and inhibitory mechanism. Additionally, these data reveal the remarkable structural plasticity of serpins, whereby the basic fold is harnessed as a template for inhibition of a large spectrum of proteases by reactive centre loop exon 'switching'. This is the first structure of a Drosophila serpin reported to date, and will provide a platform for future mutational studies in Drosophila to ascertain the functional role of each of the Serpin 42 Da isoforms.


Assuntos
Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Inibidores de Serina Proteinase/química , Serpinas/química , Processamento Alternativo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Proteínas de Drosophila/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Inibidores de Serina Proteinase/metabolismo , Serpinas/metabolismo
10.
J Virol ; 87(21): 11945-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986574

RESUMO

Wolbachia blocks dengue virus replication in Drosophila melanogaster as well as in Aedes aegypti. Using the Drosophila model and mutations in the Toll and Imd pathways, we showed that neither pathway is required for expression of the dengue virus-blocking phenotype in the Drosophila host. This provides additional evidence that the mechanistic basis of Wolbachia-mediated dengue virus blocking in insects is more complex than simple priming of the host insect innate immune system.


Assuntos
Vírus da Dengue/crescimento & desenvolvimento , Proteínas de Drosophila/imunologia , Drosophila melanogaster/microbiologia , Drosophila melanogaster/virologia , Interações Microbianas , Receptores Toll-Like/imunologia , Wolbachia/crescimento & desenvolvimento , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/imunologia , Feminino , Imunidade Inata , Mutação , Transdução de Sinais , Receptores Toll-Like/genética
11.
Mol Ecol ; 23(24): 6135-51, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25401770

RESUMO

The cellular stress response has long been the primary model for studying the molecular basis of thermal adaptation, yet the link between gene expression, RNA metabolism and physiological responses to thermal stress remains largely unexplored. We address this by comparing the transcriptional and physiological responses of three geographically distinct populations of Drosophila melanogaster from eastern Australia in response to, and recovery from, a severe heat stress with and without a prestress hardening treatment. We focus on starvin (stv), recently identified as an important thermally responsive gene. Intriguingly, stv encodes seven transcripts from alternative transcription sites and alternative splicing, yet appears to be rapidly heat inducible. First, we show genetic differences in upper thermal limits of the populations tested. We then demonstrate that the stv locus does not ubiquitously respond to thermal stress but is expressed as three distinct thermal and temporal RNA phenotypes (isoforms). The shorter transcript isoforms are rapidly upregulated under stress in all populations and show similar molecular signatures to heat-shock proteins. Multiple stress exposures seem to generate a reserve of pre-mRNAs, effectively 'priming' the cells for subsequent stress. Remarkably, we demonstrate a bypass in the splicing blockade in these isoforms, suggesting an essential role for these transcripts under heat stress. Temporal profiles for the weakly heat responsive stv isoform subset show opposing patterns in the two most divergent populations. Innate and induced transcriptome responses to hyperthermia are complex, and warrant moving beyond gene-level analyses.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Resposta ao Choque Térmico/genética , Processamento Alternativo , Análise de Variância , Animais , Austrália , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Feminino , Variação Genética , Genética Populacional , Temperatura Alta , Fenótipo , Transcriptoma
12.
Methods Mol Biol ; 2746: 201-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070091

RESUMO

Synapses are specialized junctions between cells that mediate neurotransmission to modify brain activity and body function. Studies on synapse structure and function play an important role in understanding how neurons communicate and the consequences of their dysfunction in neurological disorders. The Drosophila larval neuromuscular junction is an excellent model for dissecting the cellular and molecular mechanisms of the synapse, with its large size, accessibility, and well-characterized genetics. This protocol describes the steps required for morphological and immunohistochemical analysis of the Drosophila larval neuromuscular junction including its dissection and multiplex labeling of synaptic proteins. This technique can be used to assess the impact of genetic manipulations on synaptic development, integrity, and plasticity, thus providing a valuable tool for probing complex neurological processes in a whole animal system.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Larva/fisiologia , Junção Neuromuscular/fisiologia , Sinapses/fisiologia , Transmissão Sináptica
13.
Methods Mol Biol ; 2746: 101-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070083

RESUMO

The fruit fly Drosophila melanogaster is a powerful genetic model that has been used for many decades to study nervous system function, development, and behavior. There are a large number of developmental and behavioral traits that can be measured to provide a broad readout of neurological function. These include patterned motor behaviors, such as larval locomotion, which can be used to assess whether genetic or environmental factors affect nervous system function to provide an entry point for deeper mechanistic studies. Here, we describe a protocol for quantifying larval locomotion using a simple camera setup and a freely available image analysis software. This protocol can be readily applied to human disease models or in toxicology studies, for example, to broadly assess the impact of treatments on neurological function.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Humanos , Drosophila melanogaster/genética , Larva/genética , Drosophila , Proteínas de Drosophila/genética , Locomoção/fisiologia
14.
Sci Rep ; 14(1): 6974, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521863

RESUMO

Drosophila melanogaster is unique among animal models because it has a fully defined synthetic diet available to study nutrient-gene interactions. However, use of this diet is limited to adult studies due to impaired larval development and survival. Here, we provide an adjusted formula that reduces the developmental period, restores fat levels, enhances body mass, and fully rescues survivorship without compromise to adult lifespan. To demonstrate an application of this formula, we explored pre-adult diet compositions of therapeutic potential in a model of an inherited metabolic disorder affecting the metabolism of branched-chain amino acids. We reveal rapid, specific, and predictable nutrient effects on the disease state consistent with observations from mouse and patient studies. Together, our diet provides a powerful means with which to examine the interplay between diet and metabolism across all life stages in an animal model.


Assuntos
Dieta , Drosophila melanogaster , Animais , Drosophila melanogaster/metabolismo , Longevidade , Modelos Animais , Nutrientes
15.
Cell Rep ; 43(3): 113861, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416643

RESUMO

Inherited metabolic disorders are a group of genetic conditions that can cause severe neurological impairment and child mortality. Uniquely, these disorders respond to dietary treatment; however, this option remains largely unexplored because of low disorder prevalence and the lack of a suitable paradigm for testing diets. Here, we screened 35 Drosophila amino acid disorder models for disease-diet interactions and found 26 with diet-altered development and/or survival. Using a targeted multi-nutrient array, we examine the interaction in a model of isolated sulfite oxidase deficiency, an infant-lethal disorder. We show that dietary cysteine depletion normalizes their metabolic profile and rescues development, neurophysiology, behavior, and lifelong fly survival, thus providing a basis for further study into the pathogenic mechanisms involved in this disorder. Our work highlights the diet-sensitive nature of metabolic disorders and establishes Drosophila as a valuable tool for nutrigenomic studies for informing potential dietary therapies.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Doenças Metabólicas , Lactente , Criança , Animais , Humanos , Nutrigenômica , Drosophila , Dieta , Doenças Metabólicas/genética
16.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014136

RESUMO

Many mechanistic theories of ageing argue that a progressive failure of somatic maintenance, the use of energy and resources to prevent and repair damage to the cell, underpins ageing. To sustain somatic maintenance an organism must acquire dozens of essential nutrients from the diet, including essential amino acids (EAAs), which are physiologically limiting for many animals. In Drosophila, adulthood deprivation of each individual EAA yields vastly different lifespan trajectories, and adulthood deprivation of one EAA, phenylalanine (Phe), has no associated lifespan cost; this is despite each EAA being strictly required for growth and reproduction. Moreover, survival under any EAA deprivation depends entirely on the conserved AA sensor GCN2, a component of the integrated stress response (ISR), suggesting that a novel ISR-mediated mechanism sustains lifelong somatic maintenance during EAA deprivation. Here we investigated this mechanism, finding that flies chronically deprived of dietary Phe continue to incorporate Phe into new proteins, and that challenging flies to increase the somatic requirement for Phe shortens lifespan under Phe deprivation. Further, we show that autophagy is required for full lifespan under Phe deprivation, and that activation of the ISR can partially rescue the shortened lifespan of GCN2-nulls under Phe deprivation. We therefore propose a mechanism by which GCN2, via the ISR, activates autophagy during EAA deprivation, breaking down a larvally-acquired store of EAAs to support somatic maintenance. These data refine our understanding of the strategies by which flies sustain lifelong somatic maintenance, which determines length of life in response to changes in the nutritional environment.

17.
Trends Endocrinol Metab ; 34(2): 85-105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36567227

RESUMO

Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.


Assuntos
Dieta , Drosophila , Animais , Humanos , Drosophila/metabolismo , Nutrigenômica/métodos , Aminoácidos/metabolismo
18.
Commun Biol ; 6(1): 1056, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853189

RESUMO

Neuroligins are transmembrane cell adhesion proteins well-known for their genetic links to autism spectrum disorders. Neuroligins can function by regulating the actin cytoskeleton, however the factors and mechanisms involved are still largely unknown. Here, using the Drosophila neuromuscular junction as a model, we reveal that F-Actin assembly at the Drosophila NMJ is controlled through Cofilin signaling mediated by an interaction between DNlg2 and RACK1, factors not previously known to work together. The deletion of DNlg2 displays disrupted RACK1-Cofilin signaling pathway with diminished actin cytoskeleton proteo-stasis at the terminal of the NMJ, aberrant NMJ structure, reduced synaptic transmission, and abnormal locomotion at the third-instar larval stage. Overexpression of wildtype and activated Cofilin in muscles are sufficient to rescue the morphological and physiological defects in dnlg2 mutants, while inactivated Cofilin is not. Since the DNlg2 paralog DNlg1 is known to regulate F-actin assembly mainly via a specific interaction with WAVE complex, our present work suggests that the orchestration of F-actin by Neuroligins is a diverse and complex process critical for neural connectivity.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transdução de Sinais/fisiologia , Receptores de Quinase C Ativada/genética
19.
FEBS J ; 289(13): 3735-3751, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35066977

RESUMO

Macrophages are an ancient blood cell lineage critical for homeostasis and defence against pathogens. Although their numbers were long thought to be sustained solely by haematopoietic organs, it has recently become clear that their proliferation, or self-renewal, also plays a major role. In the Drosophila larva, macrophages undergo a phase of rapid self-renewal, making this an attractive model for elucidating the signals and regulatory mechanisms involved. However, a central self-renewal pathway has not been identified in this system. Here, we show that the PDGF- and VEGF-receptor related (Pvr) pathway fulfils this role. Our data show that two of the three known Pvr ligands, PDGF- and VEGF-related factor 2 (Pvf2) and Pvf3, are major determinants of overall macrophage numbers, yet they each act in a temporally independent manner and via distinct mechanisms. While Pvf3 is needed prior to the self-renewal period, we find that Pvf2 is critical specifically for expanding the larval macrophage population. We further show that Pvf2 is a potent macrophage mitogen that is kept at limiting quantities by its transient expression in a remarkably small number of blood cells. Together, these data support a novel mechanism for the regulation of macrophage self-renewal rates by the dynamic transcriptional control of Pvf2. Given the strong parallels that exist between Drosophila and vertebrate macrophage systems, it is likely that a similar self-renewal control mechanism is at play across animal phyla.


Assuntos
Proteínas de Drosophila , Fator A de Crescimento do Endotélio Vascular , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Larva/genética , Larva/metabolismo , Macrófagos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular
20.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357435

RESUMO

Noggin is an extracellular cysteine knot protein that plays a crucial role in vertebrate dorsoventral patterning. Noggin binds and inhibits the activity of bone morphogenetic proteins via a conserved N-terminal clip domain. Noncanonical orthologs of Noggin that lack a clip domain ("Noggin-like" proteins) are encoded in many arthropod genomes and are thought to have evolved into receptor tyrosine kinase ligands that promote Torso/receptor tyrosine kinase signaling rather than inhibiting bone morphogenic protein signaling. Here, we examined the molecular function of noggin/noggin-like genes (ApNL1 and ApNL2) from the arthropod pea aphid using the dorso-ventral patterning of Xenopus and the terminal patterning system of Drosophila to identify whether these proteins function as bone morphogenic protein or receptor tyrosine kinase signaling regulators. Our findings reveal that ApNL1 from the pea aphid can regulate both bone morphogenic protein and receptor tyrosine kinase signaling pathways, and unexpectedly, that the clip domain is not essential for its antagonism of bone morphogenic protein signaling. Our findings indicate that ancestral noggin/noggin-like genes were multifunctional regulators of signaling that have specialized to regulate multiple cell signaling pathways during the evolution of animals.


Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas , Animais , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Tirosina Quinases/genética , Proteínas/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA