Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(6): 3204-3209, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36720470

RESUMO

We report an optofluidic method that enables to efficiently measure the enantiomeric excess of chiral molecules at low concentrations. The approach is to monitor the optical activity induced by a Kagome-lattice hollow-core photonic crystal fiber filled with a sub-µL volume of chiral compounds. The technique also allows monitoring the enzymatic racemization of R-mandelic acid.

2.
Opt Lett ; 48(20): 5297-5300, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831851

RESUMO

We present the advantages of supercontinuum generation in chiral, therefore circularly birefringent, all-normal dispersion fibers. Due to the absence of nonlinear power transfer between the polarization eigenstates of the fiber, chiral all-normal dispersion fibers do not exhibit any polarization instabilities and thus are an ideal platform for a low-noise supercontinuum generation. By pumping a chiral all-normal dispersion fiber at 802 nm, we obtained an octave-spanning, robustly circularly polarized supercontinuum with a low noise.

3.
Opt Lett ; 48(13): 3423-3426, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390146

RESUMO

Pairs of entangled photons-biphotons-are indispensable in quantum applications. However, some important spectral ranges, like the ultraviolet, have been inaccessible to them so far. Here, we use four-wave mixing in a xenon-filled single-ring photonic crystal fiber to generate biphotons with one of the photons in the ultraviolet and its entangled partner in the infrared spectral range. We tune the biphotons in frequency by varying the gas pressure inside the fiber and thus tailoring the fiber dispersion landscape. The ultraviolet photons are tunable from 271 nm to 231 nm and their entangled partners, from 764 nm to 1500 nm, respectively. Tunability up to 192 THz is achieved by adjusting the gas pressure by only 0.68 bar. At 1.43 bar, the photons of a pair are separated by more than 2 octaves. The access to ultraviolet wavelengths opens the possibility for spectroscopy and sensing with undetected photons in this spectral range.

4.
Opt Express ; 29(15): 24193, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614669

RESUMO

This erratum corrects a typographical error in Eq. (10) of our paper [Opt. Express29, 14615 (2021)10.1364/OE.421842].

5.
Opt Express ; 29(10): 14615-14629, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985180

RESUMO

Coherent optical frequency domain reflectometry has been widely used to locate static reflectors with high spatial resolution. Here, we present a new type of Doppler optical frequency domain reflectometry that offers simultaneous measurement of the position and speed of moving objects. The system is exploited to track optically levitated "flying" particles inside a hollow-core photonic crystal fiber. As an example, we demonstrate distributed temperature sensing with sub-mm-scale spatial resolution and a standard deviation of ∼10°C up to 200°C.

6.
Opt Lett ; 46(16): 4033-4036, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388804

RESUMO

Tunable biphotons are highly important for a wide range of quantum applications. For some applications, especially interesting are cases where two photons of a pair are far apart in frequency. Here, we report a tunable biphoton source based on a xenon-filled hollow-core photonic crystal fiber. Tunability is achieved by adjusting the pressure of the gas inside the fiber. This allows us to tailor the dispersion landscape of the fiber, overcoming the principal limitations of solid-core fiber-based biphoton sources. We report a maximum tunability of 120 THz for a pressure range of 4 bar with a continuous shift of 30 THz/bar. At 21 bar, the photons of a pair are separated by more than one octave. Despite the large separation, both photons have large bandwidths. At 17 bar, they form a very broad (110 THz) band around the frequency of the pump.

7.
Opt Lett ; 46(18): 4526-4529, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525038

RESUMO

We present the use of a linearly down-tapered gas-filled hollow-core photonic crystal fiber in a single stage, pumped with pulses from a compact infrared (IR) laser source, to generate a supercontinuum (SC) carrying significant spectral power in the deep ultraviolet (UV) [200-300 nm]. The generated SC extends from the near IR down to ∼213nm with 0.58 mW/nm and down to ∼220nm with 0.83 mW/nm in the deep UV.

8.
Opt Express ; 28(24): 35997-36008, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379704

RESUMO

Hyperspectral stimulated Raman scattering (SRS) microscopy is a powerful label-free, chemical-specific technique for biomedical and mineralogical imaging. Usually, broad and rapid spectral scanning across Raman bands is required for species identification. In many implementations, however, the Raman spectral scan speed is limited by the need to tune source laser wavelengths. Alternatively, a broadband supercontinuum source can be considered. In SRS microscopy, however, source noise is critically important, precluding many spectral broadening schemes. Here we show that a supercontinuum light source based on all normal dispersion (ANDi) fibres provides a stable broadband output with very low incremental source noise. We characterized the noise power spectral density of the ANDi fibre output and demonstrated its use in hyperspectral SRS microscopy applications. This confirms the viability and ease of implementation of ANDi fibre sources for broadband SRS imaging.

9.
Opt Lett ; 44(16): 3964-3967, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415523

RESUMO

We compare the properties of the broadband supercontinuum (SC) generated in twisted and untwisted solid-core photonic crystal fibers when pumped by circularly polarized 40 picosecond laser pulses at 1064 nm. In the helically twisted fiber, fabricated by spinning the preform during the draw, the SC is robustly circularly polarized across its entire spectrum whereas, in the straight fiber, axial fluctuations in linear birefringence and polarization-dependent nonlinear effects cause the polarization state to vary randomly with the wavelength. Theoretical modelling confirms the experimental results. Helically twisted photonic crystal fibers permit the generation of pure circularly polarized SC light with excellent polarization stability against fluctuations in input power and environmental perturbations.

10.
Opt Lett ; 43(10): 2320-2323, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762582

RESUMO

Precise control of the dispersion landscape is of crucial importance if optical fibers are to be successfully used for the generation of three-photon states of light-the inverse of third-harmonic generation (THG). Here we report gas-tuning of intermodal phase-matched THG in sub-micron-diameter tapered optical fiber. By adjusting the pressure of the surrounding argon gas up to 50 bars, intermodally phase-matched third-harmonic light can be generated for pump wavelengths within a 15 nm range around 1.38 µm. We also measure the infrared fluorescence generated in the fiber when pumped in the visible and estimate that the accidental coincidence rate in this signal is lower than the predicted detection rate of photon triplets.

11.
Opt Lett ; 42(7): 1285-1288, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362750

RESUMO

We introduce a novel design of anti-resonant fibers with negative-curvature square cores to be employed in 1.55 and 2.94 µm transmission bands. The fibers have low losses and single-mode operation via optimizing the negative curvature of the guiding walls. The first proposed fiber shows a broadband transmission window spanning 0.9-1.7 µm, with losses of 0.025 and 0.056 dB/m at 1.064 and 1.55 µm, respectively. The second proposed fiber has approximately a 0.023 dB/m guiding loss at 2.94 µm with a small cross-sectional area, useful for laser micromachining applications.

12.
Opt Lett ; 41(20): 4641-4644, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28005856

RESUMO

Femtosecond pulses circulating in a synchronously driven fiber ring cavity have complex amplitude and phase profiles that can change completely from one round-trip to the next. We use a recently developed technique, combining dispersive Fourier transformation) with spectral interferometry, to reconstruct the spectral amplitude and phase at each round-trip and, thereby, follow in detail the pulse reorganization that occurs. We focus on two different regimes: a period-two regime in which the pulse alternates between two distinct states and a highly complex regime. We characterize the spectral amplitude and phase of the pulses in both regimes at a repetition rate of 75.6 MHz and find good agreement with modeling of the system based on numerical solutions of the generalized nonlinear Schrödinger equation with feedback.

13.
Opt Lett ; 41(18): 4245-8, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628368

RESUMO

Photonic crystal fibers (PCFs) made from ZBLAN glass are of great interest for generating broadband supercontinua extending into the ultraviolet and mid-infrared regions. Precise sub-micrometer structuring makes it possible to adjust the modal dispersion over a wide range, making the generation of new frequencies more efficient. Here we report a novel ZBLAN PCF with six cores, each containing a central nanobore of a diameter ∼330 nm. Each nanobore core supports several guided modes, and the presence of the nanobore significantly modifies the dispersion, strongly influencing the dynamics and the extent of supercontinuum generation. Spectral broadening is observed when a single core is pumped in the fundamental and first higher order core modes with 200 fs long pulses at a wavelength of 1042 nm. Frequency-resolved optical gating is used to characterize the output pulses when pumping in the lowest order mode. The results are verified by numerical simulations.

14.
Phys Rev Lett ; 115(14): 143602, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26551812

RESUMO

We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagome-style photonic-crystal fiber. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ∼2500 photons per mode. The ultra-broadband (∼50 THz) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes. The presented source outperforms all previously reported squeezed-vacuum twin-beam sources in terms of brightness and low mode content.

15.
Opt Express ; 22(24): 29375-81, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606871

RESUMO

We demonstrate high atomic mercury vapor pressure in a kagomé-style hollow-core photonic crystal fiber at room temperature. After a few days of exposure to mercury vapor the fiber is homogeneously filled and the optical depth achieved remains constant. With incoherent optical pumping from the ground state we achieve an optical depth of 114 at the 6(3)P(2) - 6(3)D(3) transition, corresponding to an atomic mercury number density of 6 × 10(10) cm(-3). The use of mercury vapor in quasi one-dimensional confinement may be advantageous compared to chemically more active alkali vapor, while offering strong optical nonlinearities in the ultraviolet region of the optical spectrum.


Assuntos
Mercúrio/química , Fibras Ópticas , Fótons , Cristalização , Análise Espectral , Volatilização
16.
Opt Express ; 21(9): 10942-53, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23669950

RESUMO

An efficient and tunable 176-550 nm source based on the emission of resonant dispersive radiation from ultrafast solitons at 800 nm is demonstrated in a gas-filled hollow-core photonic crystal fiber (PCF). By careful optimization and appropriate choice of gas, informed by detailed numerical simulations, we show that bright, high quality, localized bands of UV light (relative widths of a few percent) can be generated at all wavelengths across this range. Pulse energies of more than 75 nJ in the deep-UV, with relative bandwidths of ~3%, are generated from pump pulses of a few µJ. Excellent agreement is obtained between numerical and experimental results. The effects of positive and negative axial pressure gradients are also experimentally studied, and the coherence of the deep-UV dispersive wave radiation numerically investigated.


Assuntos
Gases/química , Iluminação/instrumentação , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Ultravioleta , Vácuo
17.
Nat Commun ; 14(1): 2595, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147407

RESUMO

Slow motion movies allow us to see intricate details of the mechanical dynamics of complex phenomena. If the images in each frame are replaced by terahertz (THz) waves, such movies can monitor low-energy resonances and reveal fast structural or chemical transitions. Here, we combine THz spectroscopy as a non-invasive optical probe with a real-time monitoring technique to demonstrate the ability to resolve non-reproducible phenomena at 50k frames per second, extracting each of the generated THz waveforms every 20 µs. The concept, based on a photonic time-stretch technique to achieve unprecedented data acquisition speeds, is demonstrated by monitoring sub-millisecond dynamics of hot carriers injected in silicon by successive resonant pulses as a saturation density is established. Our experimental configuration will play a crucial role in revealing fast irreversible physical and chemical processes at THz frequencies with microsecond resolution to enable new applications in fundamental research as well as in industry.

18.
Opt Lett ; 37(21): 4371-3, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23114299

RESUMO

We demonstrate the use of a large-pitch Kagome-lattice hollow-core photonic crystal fiber probe for Raman spectroscopy. The large transmission bandwidth of the fiber enables both the excitation and Raman beams to be transmitted through the same fiber. As the excitation beam is mainly transmitted through air inside the hollow core, the silica luminescence background is reduced by over 2 orders of magnitude as compared to standard silica fiber probes, removing the need for fiber background subtraction.

19.
Phys Rev Lett ; 107(20): 203902, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22181733

RESUMO

We show theoretically that the photoionization process in a hollow-core photonic crystal fiber filled with a Raman-inactive noble gas leads to a constant acceleration of solitons in the time domain with a continuous shift to higher frequencies, limited only by ionization loss. This phenomenon is opposite to the well-known Raman self-frequency redshift of solitons in solid-core glass fibers. We also predict the existence of unconventional long-range nonlocal soliton interactions leading to spectral and temporal soliton clustering. Furthermore, if the core is filled with a Raman-active molecular gas, spectral transformations between redshifted, blueshifted, and stabilized solitons can take place in the same fiber.

20.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34244140

RESUMO

The complex tumbling motion of spinning nonspherical objects is a topic of enduring interest, both in popular culture and in advanced scientific research. Here, we report all-optical control of the spin, precession, and nutation of vaterite microparticles levitated by counterpropagating circularly polarized laser beams guided in chiral hollow-core fiber. The circularly polarized light causes the anisotropic particles to spin about the fiber axis, while, regulated by minimization of free energy, dipole forces tend to align the extraordinary optical axis of positive uniaxial particles into the plane of rotating electric field. The end result is that, accompanied by oscillatory nutation, the optical axis reaches a stable tilt angle with respect to the plane of the electric field. The results reveal new possibilities for manipulating optical alignment through rotational degrees of freedom, with applications in the control of micromotors and microgyroscopes, laser alignment of polyatomic molecules, and study of rotational cell mechanics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA