Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2206345119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914152

RESUMO

Methane (CH4) mole fractions from the large semiseasonal Llanos de Moxos wetlands (∼70,000 km2) in northern Bolivia were measured by aircraft flights and ground sampling during early March 2019 (late wet season). Daily fluxes of CH4 determined from the measurements using box models and inverse modeling were between 168 (± 50) and 456 (± 145) mg CH4⋅m-2⋅d-1 for the areas overflown, very high compared with those of previous Amazon basin studies. If the seasonality of the CH4 emissions is comparable to other parts of the Amazon Basin, the region could contribute as much as 8% of annual Amazonian CH4 emissions.


Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Bolívia , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Metano/análise , Estações do Ano
2.
Environ Sci Technol ; 56(16): 11189-11198, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35878000

RESUMO

Atmospheric aerosols are important drivers of Arctic climate change through aerosol-cloud-climate interactions. However, large uncertainties remain on the sources and processes controlling particle numbers in both fine and coarse modes. Here, we applied a receptor model and an explainable machine learning technique to understand the sources and drivers of particle numbers from 10 nm to 20 µm in Svalbard. Nucleation, biogenic, secondary, anthropogenic, mineral dust, sea salt and blowing snow aerosols and their major environmental drivers were identified. Our results show that the monthly variations in particles are highly size/source dependent and regulated by meteorology. Secondary and nucleation aerosols are the largest contributors to potential cloud condensation nuclei (CCN, particle number with a diameter larger than 40 nm as a proxy) in the Arctic. Nonlinear responses to temperature were found for biogenic, local dust particles and potential CCN, highlighting the importance of melting sea ice and snow. These results indicate that the aerosol factors will respond to rapid Arctic warming differently and in a nonlinear fashion.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poeira/análise , Aprendizado de Máquina , Tamanho da Partícula , Svalbard
3.
Philos Trans A Math Phys Eng Sci ; 380(2215): 20200449, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34865534

RESUMO

The atmospheric methane (CH4) burden is rising sharply, but the causes are still not well understood. One factor of uncertainty is the importance of tropical CH4 emissions into the global mix. Isotopic signatures of major sources remain poorly constrained, despite their usefulness in constraining the global methane budget. Here, a collection of new δ13CCH4 signatures is presented for a range of tropical wetlands and rice fields determined from air samples collected during campaigns from 2016 to 2020. Long-term monitoring of δ13CCH4 in ambient air has been conducted at the Chacaltaya observatory, Bolivia and Southern Botswana. Both long-term records are dominated by biogenic CH4 sources, with isotopic signatures expected from wetland sources. From the longer-term Bolivian record, a seasonal isotopic shift is observed corresponding to wetland extent suggesting that there is input of relatively isotopically light CH4 to the atmosphere during periods of reduced wetland extent. This new data expands the geographical extent and range of measurements of tropical wetland and rice δ13CCH4 sources and hints at significant seasonal variation in tropical wetland δ13CCH4 signatures which may be important to capture in future global and regional models. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Assuntos
Oryza , Áreas Alagadas , Atmosfera , Metano , Estações do Ano
4.
Philos Trans A Math Phys Eng Sci ; 380(2215): 20210112, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34865533

RESUMO

We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range -55 to -49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely -60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around -59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was -59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around -60 to -50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around -28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were -16 to -12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around -37 to -36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Assuntos
Poluição do Ar , Áreas Alagadas , Agricultura , Animais , Bovinos , Metano/análise , Estações do Ano
6.
Vet Comp Oncol ; 21(2): 327-331, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36861227

RESUMO

Apocrine gland anal sac adenocarcinoma (AGASACA) is a highly relevant disease in dogs, with a high rate of lymph node (LN) metastasis during the course of disease. A recent study showed that risk for death and disease progression was significantly associated with primary tumour size less than 2 and 1.3 cm, respectively. The objective of this study was to report the proportion of dogs that have primary tumours less than 2 cm in diameter, that are diagnosed with LN metastasis at presentation. This was a single site retrospective study of dogs that underwent treatment for AGASACA. Dogs were included if physical examination primary tumour measurements were available, abdominal staging was performed, and confirmation of abnormal lymph nodes by cytology or histology was done. Over a 5-year period, 116 dogs were included for review with 53 (46%) having metastatic LN at presentation. The metastatic rate for dogs with primary tumours <2 cm was 20% (9 of 46 dogs) compared to 63% (44 of 70 dogs) in dogs with primary tumours ≥2 cm. The association between tumour size group (<2 vs. ≥2 cm) and the presence of metastasis at presentation was significant (P < .0001) with an OR of 7.0 (95% CI: 2.9-15.7). Primary tumour size was significantly associated with LN metastasis at presentation but the proportion of dogs that presented with LN metastasis in the <2 cm group was relatively high. This data suggests that dogs with small tumours may still have aggressive tumour biology.


Assuntos
Adenocarcinoma , Neoplasias das Glândulas Anais , Sacos Anais , Doenças do Cão , Cães , Animais , Metástase Linfática/patologia , Glândulas Apócrinas/patologia , Sacos Anais/patologia , Adenocarcinoma/veterinária , Adenocarcinoma/patologia , Estudos Retrospectivos , Neoplasias das Glândulas Anais/patologia , Doenças do Cão/patologia , Linfonodos/patologia
7.
Science ; 317(5836): 348-51, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17641195

RESUMO

Halogens influence the oxidizing capacity of Earth's troposphere, and iodine oxides form ultrafine aerosols, which may have an impact on climate. We report year-round measurements of boundary layer iodine oxide and bromine oxide at the near-coastal site of Halley Station, Antarctica. Surprisingly, both species are present throughout the sunlit period and exhibit similar seasonal cycles and concentrations. The springtime peak of iodine oxide (20 parts per trillion) is the highest concentration recorded anywhere in the atmosphere. These levels of halogens cause substantial ozone depletion, as well as the rapid oxidation of dimethyl sulfide and mercury in the Antarctic boundary layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA