Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108360

RESUMO

Numerous studies have demonstrated the normal tissue-sparing effects of ultra-high dose rate 'FLASH' irradiation in vivo, with an associated reduction in damage burden being reported in vitro. Towards this, two key radiochemical mechanisms have been proposed: radical-radical recombination (RRR) and transient oxygen depletion (TOD), with both being proposed to lead to reduced levels of induced damage. Previously, we reported that FLASH induces lower levels of DNA strand break damage in whole-blood peripheral blood lymphocytes (WB-PBL) ex vivo, but our study failed to distinguish the mechanism(s) involved. A potential outcome of RRR is the formation of crosslink damage (particularly, if any organic radicals recombine), whilst a possible outcome of TOD is a more anoxic profile of induced damage resulting from FLASH. Therefore, the aim of the current study was to profile FLASH-induced damage via the Comet assay, assessing any DNA crosslink formation as a putative marker of RRR and/or anoxic DNA damage formation as an indicative marker of TOD, to determine the extent to which either mechanism contributes to the "FLASH effect". Following FLASH irradiation, we see no evidence of any crosslink formation; however, FLASH irradiation induces a more anoxic profile of induced damage, supporting the TOD mechanism. Furthermore, treatment of WB-PBLs pre-irradiation with BSO abrogates the reduced strand break damage burden mediated by FLASH exposures. In summary, we do not see any experimental evidence to support the RRR mechanism contributing to the reduced damage burden induced by FLASH. However, the observation of a greater anoxic profile of damage following FLASH irradiation, together with the BSO abrogation of the reduced strand break damage burden mediated by FLASH, lends further support to TOD being a driver of the reduced damage burden plus a change in the damage profile mediated by FLASH.


Assuntos
Dano ao DNA , Linfócitos , Ensaio Cometa , Linfócitos/efeitos da radiação , Oxigênio , DNA
2.
Int J Mol Sci ; 20(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618917

RESUMO

The distribution of DNA damage and repair is considered to occur heterogeneously across the genome. However, commonly available techniques, such as the alkaline comet assay or HPLC-MS/MS, measure global genome levels of DNA damage, and do not reflect potentially significant events occurring at the gene/sequence-specific level, in the nuclear or mitochondrial genomes. We developed a method, which comprises a combination of Damaged DNA Immunoprecipitation and next generation sequencing (DDIP-seq), to assess the induction and repair of DNA damage induced by 0.1 J/cm2 solar-simulated radiation at the sequence-specific level, across both the entire nuclear and mitochondrial genomes. DDIP-seq generated a genome-wide, high-resolution map of cyclobutane thymine dimer (T<>T) location and intensity. In addition to being a straightforward approach, our results demonstrated a clear differential distribution of T<>T induction and loss, across both the nuclear and mitochondrial genomes. For nuclear DNA, this differential distribution existed at both the sequence and chromosome level. Levels of T<>T were much higher in the mitochondrial DNA, compared to nuclear DNA, and decreased with time, confirmed by qPCR, despite no reported mechanisms for their repair in this organelle. These data indicate the existence of regions of sensitivity and resistance to damage formation, together with regions that are fully repaired, and those for which > 90% of damage remains, after 24 h. This approach offers a simple, yet more detailed approach to studying cellular DNA damage and repair, which will aid our understanding of the link between DNA damage and disease.


Assuntos
Ciclobutanos/química , Heterogeneidade Genética , Genoma Mitocondrial , Estudo de Associação Genômica Ampla , Genoma , Dímeros de Pirimidina/química , Sobrevivência Celular/genética , Dano ao DNA , Reparo do DNA , Sequenciamento de Nucleotídeos em Larga Escala
3.
BMC Cancer ; 18(1): 423, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661172

RESUMO

BACKGROUND: Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. METHODS: Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. RESULTS: MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. CONCLUSIONS: MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall our cell viability data indicates that targeting MTH1 will likely not be an across-the-board effective NSCLC therapeutic strategy; rather it induces non-cytotoxic DNA damage that could promote cancer heterogeneity and evolution.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Enzimas Reparadoras do DNA/genética , Monoéster Fosfórico Hidrolases/genética , Células A549 , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Dano ao DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/deficiência , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/deficiência , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
4.
Proteomics ; 14(1): 4-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24167004

RESUMO

Quantitation in plasma-based proteomics necessitates the reproducible removal of highly abundant proteins to enable the less abundant proteins to be visible to the mass spectrometer. We have evaluated immunodepletion (proteoprep20) and enrichment (Bio-Rad beads), as the current predominant approaches. Label-free analysis offers an opportunity to estimate the effectiveness of this approach without incorporating chemical labels. Human plasma samples were used to quantitatively assess the reproducibility of these two methods using nano-LC-data-independent acquisition MS. We have selected 18 candidate proteins and a comparison of both methodologies showed that both of the methods were reproducible and fell below 20% residual SD. With the same candidate proteins, individual inter-day variability for the samples was also processed, allowing us to monitor instrument reproducibility. Overall, a total of 131 proteins were identified by both methods with 272 proteins identified by enrichment and 200 identified by immunodepletion. Reproducibility of measurements of the amount of protein in the processed sample for individual proteins is within analytically acceptable standards for both methodologies. This enables both methods to be used for biomarker studies. However, when sample is limited, enrichment is not suitable as larger volumes (>1.0 mL) are required. In experiments where sample is not limited then a greater number of proteins can be reliably identified using enrichment.


Assuntos
Proteínas Sanguíneas/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/isolamento & purificação , Humanos , Proteoma/química , Reprodutibilidade dos Testes
5.
Int J Cancer ; 134(5): 1102-11, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23959905

RESUMO

Bladder cancer patients suffer significant treatment failure, including high rates of recurrence and poor outcomes for advanced disease. If mechanisms to improve tumour cell treatment sensitivity could be identified and/or if tumour response could be predicted, it should be possible to improve local-control and survival. Previously, we have shown that radiation-induced DNA damage, measured by alkaline Comet assay (ACA), correlates bladder cancer cell radiosensitivity in vitro. In this study we first show that modified-ACA measures of cisplatin and mitomycin-C-induced damage also correlate bladder cancer cell chemosensitivity in vitro, with essentially the same rank order for chemosensitivity as for radiosensitivity. Furthermore, ACA studies of radiation-induced damage in different cell-DNA substrates (nuclei, nucleoids and intact parent cells) suggest that it is a feature retained in the prepared nucleoids that is responsible for the relative damage sensitivity of bladder cancer cells, suggestive of differences in the organisation of DNA within resistant vs. sensitive cells. Second, we show that ACA analysis of biopsies from bladder tumours reveal that reduced DNA damage sensitivity associates with poorer treatment outcomes, notably that tumours with a reduced damage response show a significant association with local recurrence of non-invasive disease and that reduced damage response was a better predictor of recurrence than the presence of high-risk histology in this cohort. In conclusion, this study demonstrates that mechanisms governing treatment-induced DNA damage are both central to and predictive of bladder cancer cell treatment sensitivity and exemplifies a link between DNA damage resistance and both treatment response and tumour aggression.


Assuntos
Ensaio Cometa/métodos , Dano ao DNA , Neoplasias da Bexiga Urinária/tratamento farmacológico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos , Mitomicina/farmacologia , Resultado do Tratamento , Neoplasias da Bexiga Urinária/genética
6.
Mutagenesis ; 29(4): 227-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24743948

RESUMO

Bladder cancer is associated with high rates of recurrence making tertiary chemoprevention an attractive intervention strategy. Anthocyanins have been shown to possess chemopreventive properties and are detectable in urine after oral ingestion, with higher concentrations achievable via intravesical administration alongside current chemotherapeutic regimens. Yet their apparent ability to protect against certain DNA damage may in turn interfere with cancer treatments. Our aim was therefore to determine the potential of anthocyanins as chemopreventive agents in bladder cancer, their mode of action and effects, both alone and in combination with mitomycin C (MMC). In this study we showed that mirtoselect, a standardised mixture of anthocyanins, possesses significant anti-proliferative activity, causing growth inhibition and apoptosis in bladder cancer cell lines. The anti-oxidative potential of mirtoselect was examined and revealed significantly fewer H2O2-induced DNA strand breaks, as well as oxidised DNA bases in pre-treated cells. In contrast, endogenous levels of oxidised DNA bases were unaltered. Investigations into the possible protective mechanisms associated with these anti-oxidant properties revealed that mirtoselect chelates metal ions. In mirtoselect/MMC combination studies, no adverse effects on measures of DNA damage were observed compared to treatment with MMC alone and there was evidence of enhanced cell death. Consistent with this, significantly more DNA crosslinks were formed in cells treated with the combination. These results show that mirtoselect exerts effects consistent with chemopreventive properties in bladder cancer cell lines and most importantly does so without adversely affecting the effects of drugs used in current treatment regimens. We also provide evidence that mirtoselect's anti-oxidative mechanism of action is via metal ion chelation. Overall these results suggest that mirtoselect could be an effective chemopreventive agent in bladder cancer and provides the necessary pre-clinical data for future in vivo animal studies and clinical trials.


Assuntos
Antocianinas/uso terapêutico , Antioxidantes/uso terapêutico , Quimioprevenção , Mitomicina/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Antocianinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quelantes/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Citoproteção/efeitos dos fármacos , Dano ao DNA , Interações Medicamentosas , Humanos , Mitomicina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Raios X
7.
Mutagenesis ; 29(4): 241-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24737269

RESUMO

This study investigated the levels of DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG) sensitive sites, as assessed by the comet assay, in peripheral blood mononuclear cells (PBMC) from healthy women from five different countries in Europe. The laboratory in each country (referred to as 'centre') collected and cryopreserved PBMC samples from three donors, using a standardised cell isolation protocol. The samples were analysed in 13 different laboratories for DNA damage, which is measured by the comet assay. The study aim was to assess variation in DNA damage in PBMC samples that were collected in the same way and processed using the same blood isolation procedure. The inter-laboratory variation was the prominent contributor to the overall variation. The inter-laboratory coefficient of variation decreased for both DNA strand breaks (from 68 to 26%) and FPG sensitive sites (from 57 to 12%) by standardisation of the primary comet assay endpoint with calibration curve samples. The level of DNA strand breaks in the samples from two of the centres (0.56-0.61 lesions/10(6) bp) was significantly higher compared with the other three centres (0.41-0.45 lesions/10(6) bp). In contrast, there was no difference between the levels of FPG sensitive sites in PBMC samples from healthy donors in the different centres (0.41-0.52 lesion/10(6) bp).


Assuntos
Separação Celular/métodos , Dano ao DNA , Laboratórios , Leucócitos Mononucleares/metabolismo , Adulto , Calibragem , Ensaio Cometa , Quebras de DNA de Cadeia Dupla , DNA-Formamidopirimidina Glicosilase/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Testes de Mutagenicidade , Análise de Regressão
8.
Anal Bioanal Chem ; 406(30): 8033-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25374124

RESUMO

This note presents a comparison of the use of saliva versus leukocytes for the determination of Pt-DNA adducts obtained from patients undergoing platinum-based chemotherapy. Samples of both blood and saliva were taken pre- and post-treatment and were analysed via sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) to determine the level of Pt-DNA adducts formed. As expected, significant inter-patient variability was seen; however, a lack of correlation between the levels of adducts observed in saliva and blood samples was also observed (Pearson correlation coefficient r = -0.2598). A high yield of DNA was obtained from saliva samples, but significant difficulties were experienced in obtaining patient adherence to the saliva sampling procedure. In both leukocyte and saliva samples, not only was Pt from previous chemotherapy cycles detected, but the rapid appearance of Pt in the DNA was noted in both sample types 1 h after treatment.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Adutos de DNA/análise , Compostos Organoplatínicos/farmacologia , Platina/análise , Saliva/química , Humanos , Leucócitos/química , Leucócitos/efeitos dos fármacos , Espectrometria de Massas , Neoplasias/química , Neoplasias/tratamento farmacológico , Oxaliplatina , Saliva/efeitos dos fármacos
9.
J Biol Chem ; 287(13): 9845-9854, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22311974

RESUMO

p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sarcoma/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Morte Celular/genética , Linhagem Celular Tumoral , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Sarcoma/genética , Sarcoma/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genética
10.
Mutagenesis ; 28(3): 279-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23446176

RESUMO

The alkaline comet assay is an established, sensitive method extensively used in biomonitoring studies. This method can be modified to measure a range of different types of DNA damage. However, considerable differences in the protocols used by different research groups affect the inter-laboratory comparisons of results. The aim of this study was to assess the inter-laboratory, intra-laboratory, sample and residual (unexplained) variations in DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites measured by the comet assay by using a balanced Latin square design. Fourteen participating laboratories used their own comet assay protocols to measure the level of DNA strand breaks and FPG-sensitive sites in coded samples containing peripheral blood mononuclear cells (PBMC) and the level of DNA strand breaks in coded calibration curve samples (cells exposed to different doses of ionising radiation) on three different days of analysis. Eleven laboratories found dose-response relationships in the coded calibration curve samples on two or three days of analysis, whereas three laboratories had technical problems in their assay. In the coded calibration curve samples, the dose of ionising radiation, inter-laboratory variation, intra-laboratory variation and residual variation contributed to 60.9, 19.4, 0.1 and 19.5%, respectively, of the total variation. In the coded PBMC samples, the inter-laboratory variation explained the largest fraction of the overall variation of DNA strand breaks (79.2%) and the residual variation (19.9%) was much larger than the intra-laboratory (0.3%) and inter-subject (0.5%) variation. The same partitioning of the overall variation of FPG-sensitive sites in the PBMC samples indicated that the inter-laboratory variation was the strongest contributor (56.7%), whereas the residual (42.9%), intra-laboratory (0.2%) and inter-subject (0.3%) variations again contributed less to the overall variation. The results suggest that the variation in DNA damage, measured by comet assay, in PBMC from healthy subjects is assay variation rather than variation between subjects.


Assuntos
Ensaio Cometa , Quebras de DNA , DNA-Formamidopirimidina Glicosilase/metabolismo , Leucócitos Mononucleares/metabolismo , Adulto , Ensaio Cometa/métodos , Quebras de DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Raios gama/efeitos adversos , Humanos , Leucócitos Mononucleares/efeitos da radiação , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
11.
Mutat Res ; 757(1): 60-7, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23830929

RESUMO

The measurement of DNA-repair activity by extracts from cells or tissues by means of the single-cell gel electrophoresis (comet) assay has a high potential to become widely used in biomonitoring studies. We assessed the inter-laboratory variation in reported values of DNA-repair activity on substrate cells that had been incubated with Ro19-8022 plus light to generate oxidatively damaged DNA. Eight laboratories assessed the DNA-repair activity of three cell lines (i.e. one epithelial and two fibroblast cell lines), starting with cell pellets or with cell extracts provided by the coordinating laboratory. There was a large inter-laboratory variation, as evidenced by the range in the mean level of repair incisions between the laboratory with the lowest (0.002incisions/10(6)bp) and highest (0.988incisions/10(6)bp) incision activity. Nevertheless, six out of eight laboratories reported the same cell line as having the highest level of DNA-repair activity. The two laboratories that reported discordant results (with another cell line having the highest level of DNA-repair activity) were those that reported to have little experience with the modified comet assay to assess DNA repair. The laboratories were also less consistent in ordering the repair activity of the other two cell lines, probably because the DNA-repair activity by extracts from these cell lines were very similar (on average approximately 60-65% of the cell line with the highest repair capacity). A significant correlation was observed between the repair activity found in the provided and the self-made cell extracts (r=0.71, P<0.001), which indicates that the predominant source for inter-laboratory variation is derived from the incubation of the extract with substrate cells embedded in the gel. Overall, we conclude that the incubation step of cell extracts with the substrate cells can be identified as a major source of inter-laboratory variation in the modified comet assay for base-excision repair.


Assuntos
Ensaio Cometa/métodos , Dano ao DNA/genética , Reparo do DNA/genética , Monócitos/efeitos da radiação , Linhagem Celular/efeitos da radiação , Monitoramento Ambiental , Humanos , Monócitos/citologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-36669811

RESUMO

Several trials have attempted to identify sources of inter-laboratory variability in comet assay results, aiming at achieving more equal responses. Ionising radiation induces a defined level of DNA single-strand breaks (per dose/base pairs) and is used as a reference when comparing comet results but relies on accurately determined radiation doses. In this ring test we studied the significance of dose calibrations and comet assay protocol differences, with the object of identifying causes of variability and how to deal with them. Eight participating laboratories, using either x-ray or gamma radiation units, measured dose rates using alanine pellet dosimeters that were subsequently sent to a specialised laboratory for analysis. We found substantial deviations between calibrated and nominal (uncalibrated) dose rates, with up to 46% difference comparing highest and lowest values. Three additional dosimetry systems were employed in some laboratories: thermoluminescence detectors and two aqueous chemical dosimeters. Fricke's and Benzoic Acid dosimetry solutions gave reliable quantitative dose estimations using local equipment. Mononuclear cells from fresh human blood or mammalian cell lines were irradiated locally with calibrated (alanine) radiation doses and analysed for DNA damage using a standardised comet assay protocol and a lab-specific protocol. The dose response of eight laboratories, calculated against calibrated radiation doses, was linear with slope variance CV= 29% with the lab-specific protocol, reduced to CV= 16% with the standard protocol. Variation between laboratories indicate post-irradiation repair differences. Intra-laboratory variation was very low judging from the dose response of 8 donors (CV=4%). Electrophoresis conditions were different in the lab-specific protocols explaining some dose response variations which were reduced by systematic corrections for electrophoresis conditions. The study shows that comet assay data obtained in different laboratories can be compared quantitatively using calibrated radiation doses and that systematic corrections for electrophoresis conditions are useful.


Assuntos
Dano ao DNA , Radiação Ionizante , Animais , Humanos , Ensaio Cometa/métodos , Calibragem , Raios gama , Relação Dose-Resposta à Radiação , Mamíferos
13.
Mutagenesis ; 27(6): 665-72, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22844078

RESUMO

There are substantial inter-laboratory variations in the levels of DNA damage measured by the comet assay. The aim of this study was to investigate whether adherence to a standard comet assay protocol would reduce inter-laboratory variation in reported values of DNA damage. Fourteen laboratories determined the baseline level of DNA strand breaks (SBs)/alkaline labile sites and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites in coded samples of mononuclear blood cells (MNBCs) from healthy volunteers. There were technical problems in seven laboratories in adopting the standard protocol, which were not related to the level of experience. Therefore, the inter-laboratory variation in DNA damage was only analysed using the results from laboratories that had obtained complete data with the standard comet assay protocol. This analysis showed that the differences between reported levels of DNA SBs/alkaline labile sites in MNBCs were not reduced by applying the standard assay protocol as compared with the laboratory's own protocol. There was large inter-laboratory variation in FPG-sensitive sites by the laboratory-specific protocol and the variation was reduced when the samples were analysed by the standard protocol. The SBs and FPG-sensitive sites were measured in the same experiment, indicating that the large spread in the latter lesions was the main reason for the reduced inter-laboratory variation. However, it remains worrying that half of the participating laboratories obtained poor results using the standard procedure. This study indicates that future comet assay validation trials should take steps to evaluate the implementation of standard procedures in participating laboratories.


Assuntos
Ensaio Cometa/métodos , Ensaio Cometa/normas , Dano ao DNA , Laboratórios/normas , Calibragem , DNA-Formamidopirimidina Glicosilase/análise , Determinação de Ponto Final , Humanos , Leucócitos Mononucleares/química , Leucócitos Mononucleares/citologia , Modelos Lineares
14.
Proc Natl Acad Sci U S A ; 106(35): 14884-9, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19706487

RESUMO

The epithelial-mesenchymal transition (EMT) contributes to cancer metastasis. Two ZEB family members, ZEB1 and ZEB2(SIP1), inhibit transcription of the E-cadherin gene and induce EMT in vitro. However, their relevance to human cancer is insufficiently studied. Here, we performed a comparative study of SIP1 and ZEB1 proteins in cancer cell lines and in one form of human malignancy, carcinoma of the bladder. Whereas ZEB1 protein was expressed in all E-cadherin-negative carcinoma cell lines, being in part responsible for the high motility of bladder cancer cells, SIP1 was hardly ever detectable in carcinoma cells in culture. However, SIP1 represented an independent factor of poor prognosis (P = 0.005) in a series of bladder cancer specimens obtained from patients treated with radiotherapy. In contrast, ZEB1 was rarely expressed in tumor tissues; and E-cadherin status did not correlate with the patients' survival. SIP1 protected cells from UV- and cisplatin-induced apoptosis in vitro but had no effect on the level of DNA damage. The anti-apoptotic effect of SIP1 was independent of either cell cycle arrest or loss of cell-cell adhesion and was associated with reduced phosphorylation of ATM/ATR targets in UV-treated cells. The prognostic value of SIP1 and its role in DNA damage response establish a link between genetic instability and metastasis and suggest a potential importance for this protein as a therapeutic target. In addition, we conclude that the nature of an EMT pathway rather than the deregulation of E-cadherin per se is critical for the progression of the disease and patients' survival.


Assuntos
Apoptose , Dano ao DNA , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Invasividade Neoplásica , Fenótipo , Prognóstico , Proteínas Repressoras/genética , Taxa de Sobrevida , Fatores de Transcrição/metabolismo , Resultado do Tratamento , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/radioterapia , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
15.
Cancer Res ; 82(24): 4571-4585, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36353752

RESUMO

Myofibroblastic cancer-associated fibroblast (myoCAF)-rich tumors generally contain few T cells and respond poorly to immune-checkpoint blockade. Although myoCAFs are associated with poor outcome in most solid tumors, the molecular mechanisms regulating myoCAF accumulation remain unclear, limiting the potential for therapeutic intervention. Here, we identify ataxia-telangiectasia mutated (ATM) as a central regulator of the myoCAF phenotype. Differentiating myofibroblasts in vitro and myoCAFs cultured ex vivo display activated ATM signaling, and targeting ATM genetically or pharmacologically could suppress and reverse differentiation. ATM activation was regulated by the reactive oxygen species-producing enzyme NOX4, both through DNA damage and increased oxidative stress. Targeting fibroblast ATM in vivo suppressed myoCAF-rich tumor growth, promoted intratumoral CD8 T-cell infiltration, and potentiated the response to anti-PD-1 blockade and antitumor vaccination. This work identifies a novel pathway regulating myoCAF differentiation and provides a rationale for using ATM inhibitors to overcome CAF-mediated immunotherapy resistance. SIGNIFICANCE: ATM signaling supports the differentiation of myoCAFs to suppress T-cell infiltration and antitumor immunity, supporting the potential clinical use of ATM inhibitors in combination with checkpoint inhibition in myoCAF-rich, immune-cold tumors.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Fibroblastos Associados a Câncer , Imunoterapia , Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Diferenciação Celular , Miofibroblastos/metabolismo , Resistencia a Medicamentos Antineoplásicos
16.
J Biol Chem ; 285(18): 13658-65, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20228054

RESUMO

Oxygen availability has important effects on cell physiology. Although hyperoxic and hypoxic stresses have been well characterized, little is known about cellular functions in the oxygen levels commonly found in vivo. Here, we show that p53-dependent apoptosis in response to different DNA-damaging agents was reduced when normal and cancer cells were cultured at physiological oxygen tensions instead of the usual atmospheric levels. Different from what has been described in hypoxia, this was neither determined by decreases in p53 induction or its transactivation activity, nor by differences in the intracellular accumulation of reactive oxygen species. At these physiological oxygen levels, we found a constitutive activation of the ERK1/2 MAPK in all the models studied. Inhibition of this signaling pathway reversed the protective effect in some but not all cell lines. We conclude that a stress-independent constitutive activation of prosurvival pathways, including but probably not limited to MAPK, can protect cells in physiological oxygen tensions against genotoxic stress. Our results underscore the need of considering the impact of oxygen levels present in the tissue microenvironment when studying cell sensitivity to treatments such as chemotherapy and radiotherapy.


Assuntos
Apoptose , Dano ao DNA , Modelos Biológicos , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Supressora de Tumor p53/genética
17.
Nucleic Acids Res ; 37(22): e150, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19828597

RESUMO

The Comet assay (CA) is a sensitive/simple measure of genotoxicity. However, many features of CA contribute variability. To minimize these, we have introduced internal standard materials consisting of 'reference' cells which have their DNA substituted with BrdU. Using a fluorescent anti-BrdU antibody, plus an additional barrier filter, comets derived from these cells could be readily distinguished from the 'test'-cell comets, present in the same gel. In experiments to evaluate the reference cell comets as external and internal standards, the reference and test cells were present in separate gels on the same slide or mixed together in the same gel, respectively, before their co-exposure to X-irradiation. Using the reference cell comets as internal standards led to substantial reductions in the coefficient of variation (CoV) for intra- and inter-experimental measures of comet formation and DNA damage repair; only minor reductions in CoV were noted when the reference and test cell comets were in separate gels. These studies indicate that differences between individual gels appreciably contribute to CA variation. Further studies using the reference cells as internal standards allowed greater significance to be obtained between groups of replicate samples. Ultimately, we anticipate that development will deliver robust quality assurance materials for CA.


Assuntos
Ensaio Cometa/normas , Dano ao DNA , Reparo do DNA , Linhagem Celular Tumoral , Interpretação Estatística de Dados , Humanos , Padrões de Referência , Reprodutibilidade dos Testes
18.
Chem Res Toxicol ; 23(8): 1313-21, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20666396

RESUMO

Platinum-containing drugs are widely used to treat cancer in a variety of clinical settings. Their mode of action involves the formation of DNA adducts, which facilitate apoptosis in cancer cells. Cisplatin binds to the N7 position of the purine DNA bases forming intrastrand cross-links between either two adjacent guanines [cis-Pt(NH(3))(2)d(pGpG), 1,2-GG] or an adjacent adenine and guanine [cis-Pt(NH(3))(2)d(pApG), 1,2-AG)]. The cytotoxic efficacy for each of the different types of DNA adducts and the relationship between adduct levels in tumor cells and blood are not well understood. By using these Pt-containing adduct species as biomarkers, information on a patient's response to chemotherapy would be directly related to the mode of action of the drug. This type of analysis requires the most sensitive and specific methods available, to facilitate detection limits sufficient to measure the DNA adduct in the limited sample quantities available from patients. This was achieved in the current study by coupling a highly specific enzyme-based adduct isolation method with a sensitive detection system based on HPLC coupled to inductively coupled plasma mass spectrometry to measure the 1,2-GG cisplatin adducts formed in DNA. The method was developed and validated using calf thymus DNA and two different adenocarcinoma cell lines. The values for the limit of detection (LOD) and the limit of quantitation determined for the 1,2-GG cisplatin adduct were 0.21 and 0.67 fmol per microg DNA, respectively. This corresponds to an absolute LOD of 0.8 pg as Pt for the 1,2-GG adduct. Cisplatin-sensitive (H23) and -resistant (A549) tumor cells were exposed to the drug, and the 1,2-GG adduct levels were measured over a 24 h time period. The results showed a statistically significant (P < 0.05) higher concentration in the sensitive cells as compared to the resistant cells after repair for 7 h. Although the adduct concentration present fell at subsequent time points (12 and 24 h), the levels in each cell line were broadly similar. The protocol was then applied to the analysis of patient samples taken before and then 1 h after treatment. The 1,2-GG cisplatin adduct was present in the range from 113 to 1245 fg Pt per microg DNA in all of the patient samples taken after treatment. Although the adduct was not present at levels greater than the LOD in the initial pretreatment samples, trace amounts were discernible in some patient samples on their third treatment cycle.


Assuntos
Antineoplásicos/análise , Cisplatino/análise , Adutos de DNA/análise , Adutos de DNA/química , Guanina/química , Leucócitos/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Bovinos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cisplatino/química , Cisplatino/farmacologia , DNA/química , DNA/efeitos dos fármacos , Adutos de DNA/farmacologia , DNA de Neoplasias/efeitos dos fármacos , DNA de Neoplasias/genética , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Espectrometria de Massas , Sensibilidade e Especificidade
19.
Mutagenesis ; 25(1): 3-16, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19920061

RESUMO

In addition to reacting with DNA base moieties, many chemical genotoxins also react with the oxygen atoms of the internucleotidic phosphodiester linkages to form phosphotriester adducts (PTEs). In view of their stability under physiological conditions, it has been suggested that PTEs may be useful biomarkers for measuring cumulative genotoxin exposure. The methodology for their determination is varied and still not completely developed but includes determination of hydrolysis products and (32)P-postlabelling approaches. More recently, transalkylation and direct mass spectrometry techniques have been devised, which give extra chemical information on the structures of the PTEs. The proportion of DNA damage formed as PTEs is much greater with SN1 compared to SN2 alkylating agents, and it has been shown in DNA that the formation of PTEs is partially sequence dependent. PTEs have been considered to be refractory to repair in mammalian cells but repair mechanisms have been found in prokaryotic cells, e.g. PTEs in Escherichia coli are repaired by O(6)-methylguanine-DNA methyltransferase (O(6)-MGT or Ada protein). However, studies on in vivo persistence of PTEs in mammalian systems have not ruled out the possibility of a contribution from an active repair process for PTEs. The biological significance of PTEs is largely unstudied and unknown, although effects of PTEs on DNA polymerases, and some exo- and endonucleases have been observed. Also site-specific PTEs impair the repair processing of adjacent sites of DNA damage, which may be a biological mechanism of importance for these lesions. In this review, we will consider the analytical methods available for the determination of PTEs, their stability in vitro and in vivo, the mechanisms for their repair, their possible biological significance and their potential role as biomarkers in human molecular epidemiology studies.


Assuntos
Biomarcadores/metabolismo , Adutos de DNA/química , Reparo do DNA/fisiologia , Compostos de Fósforo/química , Ativação Transcricional/fisiologia , Animais , Reparo do DNA/genética , Escherichia coli , Hidrólise , Masculino , Espectrometria de Massas , Camundongos , Estrutura Molecular , Radioisótopos de Fósforo/metabolismo , Ativação Transcricional/genética
20.
Mutagenesis ; 25(2): 109-11, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20064897

RESUMO

The alkaline single cell gel electrophoresis (comet) assay has become a widely used method for the detection of DNA damage and repair in cells and tissues. Still, it has been difficult to compare results from different investigators because of differences in assay conditions and because the data are reported in different units. The European Comet Assay Validation Group (ECVAG) was established for the purpose of validation of the comet assay with respect to measures of DNA damage formation and its repair. The results from this inter-laboratory validation trail showed a large variation in measured level of DNA damage and formamidopyrimidine DNA glycosylase-sensitive sites but the laboratories could detect concentration-dependent relationships in coded samples. Standardization of the results with reference standards decreased the inter-laboratory variation. The ECVAG trail indicates substantial reliability for the measurement of DNA damage by the comet assay but there is still a need for further validation to reduce both assay and inter-laboratory variation.


Assuntos
Ensaio Cometa/normas , Dano ao DNA , Laboratórios/normas , DNA-Formamidopirimidina Glicosilase/metabolismo , Europa (Continente) , Feminino , Células HeLa , Humanos , Masculino , Variações Dependentes do Observador , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA