Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 122(18): 14471-14553, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35960550

RESUMO

Block copolymers form the basis of the most ubiquitous materials such as thermoplastic elastomers, bridge interphases in polymer blends, and are fundamental for the development of high-performance materials. The driving force to further advance these materials is the accessibility of block copolymers, which have a wide variety in composition, functional group content, and precision of their structure. To advance and broaden the application of block copolymers will depend on the nature of combined segmented blocks, guided through the combination of polymerization techniques to reach a high versatility in block copolymer architecture and function. This review provides the most comprehensive overview of techniques to prepare linear block copolymers and is intended to serve as a guideline on how polymerization techniques can work together to result in desired block combinations. As the review will give an account of the relevant procedures and access areas, the sections will include orthogonal approaches or sequentially combined polymerization techniques, which increases the synthetic options for these materials.


Assuntos
Elastômeros , Polímeros , Elastômeros/química , Polimerização , Polímeros/química
2.
J Am Chem Soc ; 145(18): 9898-9915, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37127289

RESUMO

Controlled polymerization methods are well-established synthetic protocols for the design and preparation of polymeric materials with a high degree of precision over molar mass and architecture. Exciting recent work has shown that the high end-group fidelity and/or functionality inherent in these techniques can enable new routes to depolymerization under relatively mild conditions. Converting polymers back to pure monomers by depolymerization is a potential solution to the environmental and ecological concerns associated with the ultimate fate of polymers. This perspective focuses on the emerging field of depolymerization from polymers synthesized by controlled polymerizations including radical, ionic, and metathesis polymerizations. We provide a critical review of current literature categorized according to polymerization technique and explore numerous concepts and ideas which could be implemented to further enhance depolymerization including lower temperature systems, catalytic depolymerization, increasing polymer scope, and controlled depolymerization.

3.
Angew Chem Int Ed Engl ; 62(38): e202309116, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37523176

RESUMO

Although controlled radical polymerization is an excellent tool to make precision polymeric materials, reversal of the process to retrieve the starting monomer is far less explored despite the significance of chemical recycling. Here, we investigate the bulk depolymerization of RAFT and ATRP-synthesized polymers under identical conditions. RAFT-synthesized polymers undergo a relatively low-temperature solvent-free depolymerization back to monomer thanks to the partial in situ transformation of the RAFT end-group to macromonomer. Instead, ATRP-synthesized polymers can only depolymerize at significantly higher temperatures (>350 °C) through random backbone scission. To aid a more complete depolymerization at even lower temperatures, we performed a facile and quantitative end-group modification strategy in which both ATRP and RAFT end-groups were successfully converted to macromonomers. The macromonomers triggered a lower temperature bulk depolymerization with an onset at 150 °C yielding up to 90 % of monomer regeneration. The versatility of the methodology was demonstrated by a scalable depolymerization (≈10 g of starting polymer) retrieving 84 % of the starting monomer intact which could be subsequently used for further polymerization. This work presents a new low-energy approach for depolymerizing controlled radical polymers and creates many future opportunities as high-yielding, solvent-free and scalable depolymerization methods are sought.

4.
Angew Chem Int Ed Engl ; 60(3): 1635-1640, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32986896

RESUMO

Coordinating solvents are commonly employed as ancillary ligands to stabilize late transition metal complexes and are conventionally considered to have little effect on the reaction products. Our work identifies that the presence of ancillary ligand in Pd-diimine catalyzed polymerizations of α-olefins can drastically alter reactivity. The addition of different amounts of acetonitrile allows for switching between distinct reaction modes: isomerization-polymerization with high branching (0 equiv.), regular chain-walking polymerization (1 equiv.), and alkene isomerization with no polymerization (>20 equiv.). Optimization of the isomerization reaction mode led to a general set of conditions to switch a wide variety of diimine complexes into efficient alkene isomerization catalysts, with catalyst loading as low as 0.005 mol %.

5.
Angew Chem Int Ed Engl ; 59(12): 4743-4749, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31881118

RESUMO

We present a new strategy to regulate branching in chain-walking olefin polymerization by triggering a rapid isomerization of 1-alkene monomers into internal olefins by adding a Lewis acid. Polymerization of internal alkenes proceeds via chain-walking to give polymers with much higher branching than 1-alkene analogues. The utility of this approach is exemplified by synthesis of well-defined block copolymers with distinct branching characteristics per block by addition of Lewis acid midway through a reaction. We propose a novel mechanism whereby Lewis acid undergoes a counterion swap with the complex which favors isomerization as well as forming adducts with ancillary ligands, freeing coordination sites for internal alkene coordination polymerization.

6.
Macromol Rapid Commun ; 40(13): e1900088, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31066461

RESUMO

Tandem mass spectrometry is a powerful technique for investigating polymer architecture. However, in-depth studies of the technique for polymers is relatively lacking when compared to other areas of mass spectrometry (MS). This paper examines the use laser-induced dissociation and collision-induced dissociation (CID) in MALDI-LIFT-ToF/ToF experiments to compare the usage of the two techniques on a range of polymeric analytes. It is demonstrated that for samples with an energetically preferable fragmentation pathway, such as those with a functional group in the backbone or a labile end group, post source decay (PSD) provides a simplified spectra with an increased pathway selectivity due to its utilization of metastable decay. This makes PSD a preferable technique for polymer sequencing, especially in low-resolution time-of-flight techniques. Conversely, CID fragments less selectively, leading to higher intensity peaks from less favorable fragmentations. This makes CID more preferred for exact structural determination, such as finding the repeat unit structure.


Assuntos
Polímeros/análise , Polímeros/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
7.
Angew Chem Int Ed Engl ; 58(36): 12370-12391, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-30791191

RESUMO

The inherent differences in reactivity between activated and non-activated alkenes prevents copolymerization using established polymer synthesis techniques. Research over the past 20 years has greatly advanced the copolymerization of polar vinyl monomers and olefins. This Review highlights the challenges associated with conventional polymerization systems and evaluates the most relevant methods which have been developed to "bridge the gap" between polar vinyl monomers and olefins. We discuss advancements in heteroatom tolerant coordination-insertion polymerizations, methods of controlling radical polymerizations to incorporate olefinic monomers, as well as combined approaches employing sequential polymerizations. Finally, we discuss state-of-the-art stimuli-responsive systems capable of facile switching between catalytic pathways and provide an outlook towards applications in which tailored copolymers are ideally suited.

8.
Angew Chem Int Ed Engl ; 57(33): 10468-10482, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29603854

RESUMO

Key advances within the past 10 years have transformed copper-mediated radical polymerization from a technique which was not very tolerant of protic media into a range of closely related processes capable of controlling the polymerization of a wide range of monomers in pure water at ppm catalyst loadings. This approach has afforded water-soluble macromolecules of desired molecular weight, architecture, and chemical functionality, with applications ranging from drug delivery to oil processing. In this Review we highlight and critically evaluate the synthetic methods that have been developed to control radical polymerization in water by using copper complexes as well as identify future areas of interest and challenges still to be overcome.

9.
Angew Chem Int Ed Engl ; 57(29): 8998-9002, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29757482

RESUMO

As a method for overcoming the challenge of rigorous deoxygenation in copper-mediated controlled radical polymerization processes [e.g., atom-transfer radical polymerization (ATRP)], reported here is a simple Cu0 -RDRP (RDRP=reversible deactivation radical polymerization) system in the absence of external additives (e.g., reducing agents, enzymes etc.). By simply adjusting the headspace of the reaction vessel, a wide range of monomers, namely acrylates, methacrylates, acrylamides, and styrene, can be polymerized in a controlled manner to yield polymers with low dispersities, near-quantitative conversions, and high end-group fidelity. Significantly, this approach is scalable (ca. 125 g), tolerant to elevated temperatures, compatible with both organic and aqueous media, and does not rely on external stimuli which may limit the monomer pool. The robustness and versatility of this methodology is further demonstrated by the applicability to other copper-mediated techniques, including conventional ATRP and light-mediated approaches.

10.
J Am Chem Soc ; 139(2): 1003-1010, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28032504

RESUMO

Atom transfer radical polymerization (ATRP) typically requires various parameters to be optimized in order to achieve a high degree of control over molecular weight and dispersity (such as the type of initiator, transition metal, ligand, solvent, temperature, deactivator, added salts, and reducing agents). These components play a major role when switching monomers, e.g., from acrylic to methacrylic and/or styrenic monomers during the synthesis of homo- and block copolymers as the stability and reactivity of the carbon centered propagating radical dramatically changes. This is a challenge for both "experts" and nonexperts as choosing the appropriate conditions for successful polymerization can be time-consuming and overall an arduous task. In this work, we describe one set of universal conditions for the efficacious polymerization of acrylates, methacrylates and styrene (using an identical initiator, ligand, copper salt, and solvent) based on commercially available and inexpensive reagents (PMDETA, IPA, Cu(0) wire). The versatility of these conditions is demonstrated by the near quantitative polymerization of these monomer families to yield well-defined materials over a range of molecular weights with low dispersities (∼1.1-1.2). The control and high end group fidelity is further exemplified by in situ block copolymerization upon sequential monomer addition for the case of methacrylates and styrene furnishing higher molecular weight copolymers with minimal termination. The facile nature of these conditions, combined with readily available reagents, will greatly expand the access and availability of tailored polymeric materials to all researchers.

11.
J Am Chem Soc ; 138(23): 7346-52, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27184213

RESUMO

Photoinduced metal-mediated radical polymerization is a rapidly developing technique which allows for the synthesis of macromolecules with defined molecular weight and narrow molecular weight distributions, although typically exhibiting significant limitations in aqueous media. Herein we demonstrate that the presence of alkali metal halide salts, in conjunction with low copper concentration and UV irradiation, allows for the controlled polymerization of water-soluble acrylates in aqueous media, yielding narrow molecular weight distributions and high conversions. Despite the aqueous environment which typically compromises polymer end group fidelity, chain extensions have also been successfully performed and different degrees of polymerization were targeted. Importantly, no conversion was observed in the absence of UV light and the polymerization could be switched "on" and "off" upon demand, as demonstrated by intermittent light and dark periods and thus allowing access to spatiotemporal control.

12.
Chem Sci ; 15(7): 2665-2667, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362418

RESUMO

[This corrects the article DOI: 10.1039/D3SC05143A.].

13.
Chem Sci ; 15(3): 832-853, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239674

RESUMO

Depolymerization is potentially a highly advantageous method of recycling plastic waste which could move the world closer towards a truly circular polymer economy. However, depolymerization remains challenging for many polymers with all-carbon backbones. Fundamental understanding and consideration of both the kinetics and thermodynamics are essential in order to develop effective new depolymerization systems that could overcome this problem, as the feasibility of monomer generation can be drastically altered by tuning the reaction conditions. This perspective explores the underlying thermodynamics and kinetics governing radical depolymerization of addition polymers by revisiting pioneering work started in the mid-20th century and demonstrates its connection to exciting recent advances which report depolymerization reaching near-quantitative monomer regeneration at much lower temperatures than seen previously. Recent catalytic approaches to monomer regeneration are also explored, highlighting that this nascent chemistry could potentially revolutionize depolymerization-based polymer recycling in the future.

14.
Chem Sci ; 14(46): 13419-13428, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033899

RESUMO

Although dispersity has been demonstrated to be instrumental in determining many polymer properties, current synthetic strategies predominantly focus on tailoring the dispersity of linear polymers. In contrast, controlling the primary chain dispersity in network polymers is much more challenging, in part due to the complex nature of the reactions, which has limited the exploration of properties and applications. Here, a one-step method to prepare networks with precisely tuned primary chain dispersity is presented. By using an acid-switchable chain transfer agent and a degradable crosslinker in PET-RAFT polymerization, the in situ crosslinking of the propagating polymer chains was achieved in a quantitative manner. The incorporation of a degradable crosslinker, not only enables the accurate quantification of the various primary chain dispersities, post-synthesis, but also allows the investigation and comparison of their respective degradation profiles. Notably, the highest dispersity networks resulted in a 40% increase in degradation time when compared to their lower dispersity analogues, demonstrating that primary chain dispersity has a substantial impact on the network degradation rate. Our experimental findings were further supported by simulations, which emphasized the importance of higher molecular weight polymer chains, found within the high dispersity materials, in extending the lifetime of the network. This methodology presents a new and promising avenue to precisely tune primary chain dispersity within networks and demonstrates that polymer dispersity is an important parameter to consider when designing degradable materials.

15.
ACS Macro Lett ; 11(10): 1212-1216, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36174124

RESUMO

Reversing reversible deactivation radical polymerization (RDRP) to regenerate the original monomer is an attractive prospect for both fundamental research and industry. However, current depolymerization strategies are often applied to highly heat-tolerant polymers with a specific end-group and can only be performed in a specific solvent. Herein, we depolymerize a variety of poly(methyl methacrylate) materials made by reversible addition-fragmentation chain-transfer (RAFT) polymerization and terminated by various end groups (dithiobenzoate, trithiocarbonate, and pyrazole carbodithioate). The effect of the nature of the solvent on the depolymerization conversion was also investigated, and key solvents such as dioxane, xylene, toluene, and dimethylformamide were shown to facilitate efficient depolymerization reactions. Notably, our approach could selectively regenerate pure heat-sensitive monomers (e.g., tert-butyl methacrylate and glycidyl methacrylate) in the absence of previously reported side reactions. This work pushes the boundaries of reversing RAFT polymerization and considerably expands the chemical toolbox for recovering starting materials under relatively mild conditions.

16.
Nat Rev Chem ; 5(12): 859-869, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37117386

RESUMO

Reversible addition-fragmentation chain-transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) are the two most common controlled radical polymerization methods. Both methods afford functional polymers with a predefined length, composition, dispersity and end group. Further, RAFT and ATRP tame radicals by reversibly converting active polymeric radicals into dormant chains. However, the mechanisms by which the ATRP and RAFT methods control chain growth are distinct, so each method presents unique opportunities and challenges, depending on the desired application. This Perspective compares RAFT and ATRP by identifying their mechanistic strengths and weaknesses, and their latest synthetic applications.

17.
J Polym Sci A Polym Chem ; 57(3): 268-273, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31011240

RESUMO

A signature of photo-mediated controlled polymerizations is the ability to modulate the rate of polymerization by turning the light source 'on' and 'off.' However, in many reported systems, growth can be reproducibly observed during dark periods. In this study, emerging photo-mediated controlled radical polymerizations are evaluated with in situ 1H NMR monitoring to assess their behavior in the dark. Interestingly, it is observed that Cu-mediated systems undergo long-lived, linear growth during dark periods in organic media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA