Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(5): 1050-1062.e14, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474906

RESUMO

While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is therefore thought to occur through shedding of primary tumor cells into the cerebrospinal fluid followed by distal re-implantation on the leptomeninges. We present evidence for medulloblastoma circulating tumor cells (CTCs) in therapy-naive patients and demonstrate in vivo, through flank xenografting and parabiosis, that medulloblastoma CTCs can spread through the blood to the leptomeningeal space to form leptomeningeal metastases. Medulloblastoma leptomeningeal metastases express high levels of the chemokine CCL2, and expression of CCL2 in medulloblastoma in vivo is sufficient to drive leptomeningeal dissemination. Hematogenous dissemination of medulloblastoma offers a new opportunity to diagnose and treat lethal disseminated medulloblastoma.


Assuntos
Meduloblastoma/irrigação sanguínea , Meduloblastoma/patologia , Neoplasias Meníngeas/irrigação sanguínea , Neoplasias Meníngeas/secundário , Aloenxertos , Animais , Linhagem Celular Tumoral , Quimiocina CCL2/metabolismo , Cromossomos Humanos Par 10/genética , Feminino , Humanos , Masculino , Meduloblastoma/genética , Camundongos SCID , Células Neoplásicas Circulantes , Parabiose
3.
PLoS Genet ; 20(3): e1011192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517939

RESUMO

The HostSeq initiative recruited 10,059 Canadians infected with SARS-CoV-2 between March 2020 and March 2023, obtained clinical information on their disease experience and whole genome sequenced (WGS) their DNA. We analyzed the WGS data for genetic contributors to severe COVID-19 (considering 3,499 hospitalized cases and 4,975 non-hospitalized after quality control). We investigated the evidence for replication of loci reported by the International Host Genetics Initiative (HGI); analyzed the X chromosome; conducted rare variant gene-based analysis and polygenic risk score testing. Population stratification was adjusted for using meta-analysis across ancestry groups. We replicated two loci identified by the HGI for COVID-19 severity: the LZTFL1/SLC6A20 locus on chromosome 3 and the FOXP4 locus on chromosome 6 (the latter with a variant significant at P < 5E-8). We found novel significant associations with MRAS and WDR89 in gene-based analyses, and constructed a polygenic risk score that explained 1.01% of the variance in severe COVID-19. This study provides independent evidence confirming the robustness of previously identified COVID-19 severity loci by the HGI and identifies novel genes for further investigation.


Assuntos
COVID-19 , População Norte-Americana , Humanos , COVID-19/genética , SARS-CoV-2/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Canadá/epidemiologia , Estudo de Associação Genômica Ampla , Proteínas de Membrana Transportadoras , Fatores de Transcrição Forkhead
4.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39256198

RESUMO

Accurate assessment of fragment abundance within a genome is crucial in clinical genomics applications such as the analysis of copy number variation (CNV). However, this task is often hindered by biased coverage in regions with varying guanine-cytosine (GC) content. These biases are particularly exacerbated in hybridization capture sequencing due to GC effects on probe hybridization and polymerase chain reaction (PCR) amplification efficiency. Such GC content-associated variations can exert a negative impact on the fidelity of CNV calling within hybridization capture panels. In this report, we present panelGC, a novel metric, to quantify and monitor GC biases in hybridization capture sequencing data. We establish the efficacy of panelGC, demonstrating its proficiency in identifying and flagging potential procedural anomalies, even in situations where instrument and experimental monitoring data may not be readily accessible. Validation using real-world datasets demonstrates that panelGC enhances the quality control and reliability of hybridization capture panel sequencing.


Assuntos
Composição de Bases , Variações do Número de Cópias de DNA , Genômica , Humanos , Genômica/métodos , Análise de Sequência de DNA/métodos , Hibridização de Ácido Nucleico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Genoma Humano , Reprodutibilidade dos Testes
5.
Am J Pathol ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222907

RESUMO

Delayed diagnosis and treatment resistance make pancreatic ductal adenocarcinoma (PDAC) mortality rates high. Identifying molecular subtypes can improve treatment, but current methods are costly and time-consuming. In this study, deep learning models were used to identify histologic features that classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained histopathologic slides. A total of 97 histopathology slides associated with resectable PDAC from The Cancer Genome Atlas project were used to train a deep learning model and tested the performance on 44 needle biopsy material (110 slides) from a local annotated patient cohort. The model achieved balanced accuracy of 96.19% and 83.03% in identifying the classical and basal subtypes of PDAC in The Cancer Genome Atlas and the local cohort, respectively. This study provides a promising method to cost-effectively and rapidly classifying PDAC molecular subtypes based on routine hematoxylin-eosin-stained slides, potentially leading to more effective clinical management of this disease.

6.
Genes Chromosomes Cancer ; 63(9): e23259, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39302072

RESUMO

The identification of gene fusions in rare sarcoma subtypes can have diagnostic, prognostic, and therapeutic impacts for advanced cancer patients. Here, we present a case of a 31-year-old male with a lytic lesion of the left mandible initially diagnosed as an osteosarcoma but found to have a TFCP2 fusion and ALK alteration, redefining the diagnosis and providing rationale for a novel treatment strategy. Histologically, the tumor displayed hypercellular, spindled to epithelioid neoplasm and nuclear pleomorphism, while immunohistochemistry showed diffuse SATB2 and focal desmin staining. Whole genome and transcriptome analysis revealed a FUS::TFCP2 fusion, the defining alteration of a rare molecularly characterized subtype of soft tissue sarcoma termed intraosseous rhabdomyosarcoma. An internal ALK deletion and extremely high ALK RNA expression were also identified, suggesting potential benefit of an ALK inhibitor. This patient displayed a rapid and dramatic clinical and radiographic response to an ALK inhibitor, alectinib. Unfortunately, the response was short-lived, likely due to the advanced stage and aggressiveness of the disease. This report describes genome and transcriptome characterization of an intraosseous rhabdomyosarcoma, few of which exist in the literature, as well as providing evidence that inhibition of ALK may be a rational treatment strategy for patients with this exceedingly rare soft tissue sarcoma subtype characterized by TFCP2 fusions and ALK activation.


Assuntos
Quinase do Linfoma Anaplásico , Proteínas de Fusão Oncogênica , Proteína FUS de Ligação a RNA , Rabdomiossarcoma , Fatores de Transcrição , Humanos , Masculino , Quinase do Linfoma Anaplásico/genética , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Rabdomiossarcoma/tratamento farmacológico , Adulto , Proteína FUS de Ligação a RNA/genética , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
7.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35368077

RESUMO

Survival analysis is a technique for identifying prognostic biomarkers and genetic vulnerabilities in cancer studies. Large-scale consortium-based projects have profiled >11 000 adult and >4000 pediatric tumor cases with clinical outcomes and multiomics approaches. This provides a resource for investigating molecular-level cancer etiologies using clinical correlations. Although cancers often arise from multiple genetic vulnerabilities and have deregulated gene sets (GSs), existing survival analysis protocols can report only on individual genes. Additionally, there is no systematic method to connect clinical outcomes with experimental (cell line) data. To address these gaps, we developed cSurvival (https://tau.cmmt.ubc.ca/cSurvival). cSurvival provides a user-adjustable analytical pipeline with a curated, integrated database and offers three main advances: (i) joint analysis with two genomic predictors to identify interacting biomarkers, including new algorithms to identify optimal cutoffs for two continuous predictors; (ii) survival analysis not only at the gene, but also the GS level; and (iii) integration of clinical and experimental cell line studies to generate synergistic biological insights. To demonstrate these advances, we report three case studies. We confirmed findings of autophagy-dependent survival in colorectal cancers and of synergistic negative effects between high expression of SLC7A11 and SLC2A1 on outcomes in several cancers. We further used cSurvival to identify high expression of the Nrf2-antioxidant response element pathway as a main indicator for lung cancer prognosis and for cellular resistance to oxidative stress-inducing drugs. Altogether, these analyses demonstrate cSurvival's ability to support biomarker prognosis and interaction analysis via gene- and GS-level approaches and to integrate clinical and experimental biomedical studies.


Assuntos
Biomarcadores Tumorais , Neoplasias Pulmonares , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Criança , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Análise de Sobrevida
8.
Nature ; 562(7727): 373-379, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30209392

RESUMO

Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymphoid features, limited genetic characterization, and a lack of consensus regarding appropriate therapy. Here we show that the two principal subtypes of MPAL, T/myeloid (T/M) and B/myeloid (B/M), are genetically distinct. Rearrangement of ZNF384 is common in B/M MPAL, and biallelic WT1 alterations are common in T/M MPAL, which shares genomic features with early T-cell precursor acute lymphoblastic leukaemia. We show that the intratumoral immunophenotypic heterogeneity characteristic of MPAL is independent of somatic genetic variation, that founding lesions arise in primitive haematopoietic progenitors, and that individual phenotypic subpopulations can reconstitute the immunophenotypic diversity in vivo. These findings indicate that the cell of origin and founding lesions, rather than an accumulation of distinct genomic alterations, prime tumour cells for lineage promiscuity. Moreover, these findings position MPAL in the spectrum of immature leukaemias and provide a genetically informed framework for future clinical trials of potential treatments for MPAL.


Assuntos
Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/patologia , Linhagem da Célula/genética , Análise Mutacional de DNA , Feminino , Variação Genética/genética , Genoma Humano/genética , Genômica , Humanos , Imunofenotipagem , Leucemia Aguda Bifenotípica/classificação , Masculino , Modelos Genéticos , Mutação/genética , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Transativadores/genética
9.
Plant J ; 111(5): 1469-1485, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35789009

RESUMO

Spruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis. Here, we present and compare the genomes of four different North American spruces: the genome assemblies for Engelmann spruce (Picea engelmannii) and Sitka spruce (Picea sitchensis) together with improved and more contiguous genome assemblies for white spruce (Picea glauca) and for a naturally occurring introgress of these three species known as interior spruce (P. engelmannii × glauca × sitchensis). The genomes were structurally similar, and a large part of scaffolds could be anchored to a genetic map. The composition of the interior spruce genome indicated asymmetric contributions from the three ancestral genomes. Phylogenetic analysis of the nuclear and organelle genomes revealed a topology indicative of ancient reticulation. Different patterns of expansion of gene families among genomes were observed and related with presumed diversifying ecological adaptations. We identified rapidly evolving genes that harbored high rates of non-synonymous polymorphisms relative to synonymous ones, indicative of positive selection and its hitchhiking effects. These gene sets were mostly distinct between the genomes of ecologically contrasted species, and signatures of convergent balancing selection were detected. Stress and stimulus response was identified as the most frequent function assigned to expanding gene families and rapidly evolving genes. These two aspects of genomic evolution were complementary in their contribution to divergent evolution of presumed adaptive nature. These more contiguous spruce giga-genome sequences should strengthen our understanding of conifer genome structure and evolution, as their comparison offers clues into the genetic basis of adaptation and ecology of conifers at the genomic level. They will also provide tools to better monitor natural genetic diversity and improve the management of conifer forests. The genomes of four closely related North American spruces indicate that their high similarity at the morphological level is paralleled by the high conservation of their physical genome structure. Yet, the evidence of divergent evolution is apparent in their rapidly evolving genomes, supported by differential expansion of key gene families and large sets of genes under positive selection, largely in relation to stimulus and environmental stress response.


Assuntos
Picea , Traqueófitas , Etiquetas de Sequências Expressas , Genoma de Planta/genética , Família Multigênica/genética , Filogenia , Picea/genética , Traqueófitas/genética
10.
Nat Methods ; 16(6): 505-507, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110280

RESUMO

Tumors from individuals with cancer are frequently genetically profiled for information about the driving forces behind the disease. We present the CancerMine resource, a text-mined and routinely updated database of drivers, oncogenes and tumor suppressors in different types of cancer. All data are available online ( http://bionlp.bcgsc.ca/cancermine ) and downloadable under a Creative Commons Zero license for ease of use.


Assuntos
Mineração de Dados/métodos , Bases de Dados Factuais , Genes Supressores de Tumor , Neoplasias/genética , Oncogenes , Publicações Periódicas como Assunto , Software , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos
11.
Mod Pathol ; 35(12): 1983-1990, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36065012

RESUMO

Ovarian carcinoma has the highest mortality of all female reproductive cancers and current treatment has become histotype-specific. Pathologists diagnose five common histotypes by microscopic examination, however, histotype determination is not straightforward, with only moderate interobserver agreement between general pathologists (Cohen's kappa 0.54-0.67). We hypothesized that machine learning (ML)-based image classification models may be able to recognize ovarian carcinoma histotype sufficiently well that they could aid pathologists in diagnosis. We trained four different artificial intelligence (AI) algorithms based on deep convolutional neural networks to automatically classify hematoxylin and eosin-stained whole slide images. Performance was assessed through cross-validation on the training set (948 slides corresponding to 485 patients), and on an independent test set of 60 patients from another institution. The best-performing model achieved a diagnostic concordance of 81.38% (Cohen's kappa of 0.7378) in our training set, and 80.97% concordance (Cohen's kappa 0.7547) on the external dataset. Eight cases misclassified by ML in the external set were reviewed by two subspecialty pathologists blinded to the diagnoses, molecular and immunophenotype data, and ML-based predictions. Interestingly, in 4 of 8 cases from the external dataset, the expert review pathologists rendered diagnoses, based on blind review of the whole section slides classified by AI, that were in agreement with AI rather than the integrated reference diagnosis. The performance characteristics of our classifiers indicate potential for improved diagnostic performance if used as an adjunct to conventional histopathology.


Assuntos
Carcinoma , Aprendizado Profundo , Neoplasias Ovarianas , Humanos , Feminino , Inteligência Artificial , Carcinoma/patologia , Redes Neurais de Computação , Neoplasias Ovarianas/diagnóstico , Carcinoma Epitelial do Ovário
12.
Am J Med Genet A ; 188(5): 1589-1594, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122461

RESUMO

Microphthalmia, anophthalmia, and coloboma (MAC) are a heterogeneous spectrum of anomalous eye development and degeneration with genetic and environmental etiologies. Structural and copy number variants of chromosome 13 have been implicated in MAC; however, the specific loci involved in disease pathogenesis have not been well-defined. Herein we report a newborn with syndromic degenerative anophthalmia and a complex de novo rearrangement of chromosome 13q. Long-read genome sequencing improved the resolution and clinical interpretation of a duplication-triplication/inversion-duplication (DUP-TRP/INV-DUP) and terminal deletion. Sequence features at the breakpoint junctions suggested microhomology-mediated break-induced replication (MMBIR) of the maternal chromosome as the origin. Comparing this rearrangement to previously reported copy number alterations in 13q, we refine a putative dosage-sensitive critical region for MAC that might provide new insights into its molecular etiology.


Assuntos
Anoftalmia , Coloboma , Microftalmia , Anoftalmia/diagnóstico , Anoftalmia/genética , Anoftalmia/patologia , Sequência de Bases , Inversão Cromossômica , Mapeamento Cromossômico , Coloboma/genética , Variações do Número de Cópias de DNA/genética , Humanos , Recém-Nascido , Microftalmia/diagnóstico , Microftalmia/genética , Microftalmia/patologia
13.
Am J Med Genet A ; 188(3): 926-930, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34825470

RESUMO

Monoallelic pathogenic variants in BICD2 are associated with autosomal dominant Spinal Muscular Atrophy Lower Extremity Predominant 2A and 2B (SMALED2A, SMALED2B). As part of the cellular vesicular transport, complex BICD2 facilitates the flow of constitutive secretory cargoes from the trans-Golgi network, and its dysfunction results in motor neuron loss. The reported phenotypes among patients with SMALED2A and SMALED2B range from a congenital onset disorder of respiratory insufficiency, arthrogryposis, and proximal or distal limb weakness to an adult-onset disorder of limb weakness and contractures. We report an infant with congenital respiratory insufficiency requiring mechanical ventilation, congenital diaphragmatic paralysis, decreased lung volume, and single finger camptodactyly. The infant displayed appropriate antigravity limb movements but had radiological, electrophysiological, and histopathological evidence of myopathy. Exome sequencing and long-read whole-genome sequencing detected a novel de novo BICD2 variant (NM_001003800.1:c.[1543G>A];[=]). This is predicted to encode p.(Glu515Lys); p.Glu515 is located in the coiled-coil 2 mutation hotspot. We hypothesize that this novel phenotype of diaphragmatic paralysis without clear appendicular muscle weakness and contractures of large joints is a presentation of BICD2-related disease.


Assuntos
Contratura , Insuficiência Respiratória , Paralisia Respiratória , Humanos , Lactente , Proteínas Associadas aos Microtúbulos/genética , Debilidade Muscular , Mutação , Linhagem , Fenótipo , Insuficiência Respiratória/genética , Paralisia Respiratória/genética
14.
Nature ; 533(7602): 200-5, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27088604

RESUMO

The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.


Assuntos
Diploide , Evolução Molecular , Duplicação Gênica/genética , Genes Duplicados/genética , Genoma/genética , Salmo salar/genética , Animais , Elementos de DNA Transponíveis/genética , Feminino , Genômica , Masculino , Modelos Genéticos , Mutagênese/genética , Filogenia , Padrões de Referência , Salmo salar/classificação , Homologia de Sequência
15.
J Med Genet ; 58(3): 196-204, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32546566

RESUMO

BACKGROUND: Dysfunction of histone methyltransferases and chromatin modifiers has been implicated in complex neurodevelopmental syndromes and cancers. SETD1B encodes a lysine-specific methyltransferase that assists in transcriptional activation of genes by depositing H3K4 methyl marks. Previous reports of patients with rare variants in SETD1B describe a distinctive phenotype that includes seizures, global developmental delay and intellectual disability. METHODS: Two of the patients described herein were identified via genome-wide and exome-wide testing, with microarray and research-based exome, through the CAUSES (Clinical Assessment of the Utility of Sequencing and Evaluation as a Service) Research Clinic at the University of British Columbia. The third Vancouver patient had clinical trio exome sequencing through Blueprint Genetics. The fourth patient underwent singleton exome sequencing in Nantes, with subsequent recruitment to this cohort through GeneMatcher. RESULTS: Here we present clinical reports of four patients with rare coding variants in SETD1B that demonstrate a shared phenotype, including intellectual disability, language delay, conserved musculoskeletal findings and seizures that may be treatment-refractory. We include supporting evidence from next-generation sequencing among a cohort of paediatric patients with epilepsy. CONCLUSION: Rare coding variants in SETD1B can cause a diagnosable syndrome and could contribute as a risk factor for epilepsy, autism and other neurodevelopmental phenotypes. In the long term, some patients may also be at increased risk for cancers and other complex diseases. Thus, longitudinal studies are required to further elucidate the precise role of SETD1B in neurodevelopmental disorders and other systemic disease.


Assuntos
Deficiências do Desenvolvimento/genética , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Transtorno Autístico/genética , Transtorno Autístico/patologia , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/patologia , Epilepsia/genética , Epilepsia/patologia , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Histona Metiltransferases/genética , Humanos , Deficiência Intelectual/patologia , Masculino , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Convulsões/genética , Convulsões/patologia , Sequenciamento do Exoma
16.
Nucleic Acids Res ; 48(W1): W154-W161, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32352516

RESUMO

The separation of deleterious from benign mutations remains a key challenge in the interpretation of genomic data. Computational methods used to sort mutations based on their potential deleteriousness rely largely on conservation measures derived from sequence alignments. Here, we introduce LIST-S2, a successor to our previously developed approach LIST, which aims to exploit local sequence identity and taxonomy distances in quantifying the conservation of human protein sequences. Unlike its predecessor, LIST-S2 is not limited to human sequences but can assess conservation and make predictions for sequences from any organism. Moreover, we provide a web-tool and downloadable software to compute and visualize the deleteriousness of mutations in user-provided sequences. This web-tool contains an HTML interface and a RESTful API to submit and manage sequences as well as a browsable set of precomputed predictions for a large number of UniProtKB protein sequences of common taxa. LIST-S2 is available at: https://list-s2.msl.ubc.ca/.


Assuntos
Mutação de Sentido Incorreto , Software , Animais , Mutação em Linhagem Germinativa , Humanos , Neoplasias/genética , Análise de Sequência de Proteína
17.
Proc Natl Acad Sci U S A ; 116(38): 19098-19108, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471491

RESUMO

Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Neoplasias Encefálicas/genética , Estudos de Casos e Controles , Proliferação de Células , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Perfilação da Expressão Gênica , Glioblastoma/genética , Humanos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Transcriptoma , Células Tumorais Cultivadas , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mod Pathol ; 34(11): 2028-2035, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34112957

RESUMO

Sarcomatoid mesothelioma is an aggressive malignancy that can be challenging to distinguish from benign spindle cell mesothelial proliferations based on biopsy, and this distinction is crucial to patient treatment and prognosis. A novel deep learning based classifier may be able to aid pathologists in making this critical diagnostic distinction. SpindleMesoNET was trained on cases of malignant sarcomatoid mesothelioma and benign spindle cell mesothelial proliferations. Performance was assessed through cross-validation on the training set, on an independent set of challenging cases referred for expert opinion ('referral' test set), and on an externally stained set from outside institutions ('externally stained' test set). SpindleMesoNET predicted the benign or malignant status of cases with AUC's of 0.932, 0.925, and 0.989 on the cross-validation, referral and external test sets, respectively. The accuracy of SpindleMesoNET on the referral set cases (92.5%) was comparable to the average accuracy of 3 experienced pathologists on the same slide set (91.7%). We conclude that SpindleMesoNET can accurately distinguish sarcomatoid mesothelioma from benign spindle cell mesothelial proliferations. A deep learning system of this type holds potential for future use as an ancillary test in diagnostic pathology.


Assuntos
Aprendizado Profundo/classificação , Mesotelioma Maligno/diagnóstico , Mesotelioma/diagnóstico , Neoplasias Pleurais/diagnóstico , Área Sob a Curva , Proliferação de Células , Diagnóstico Diferencial , Humanos , Processamento de Imagem Assistida por Computador , Mesotelioma/classificação , Mesotelioma Maligno/classificação , Redes Neurais de Computação , Neoplasias Pleurais/classificação , Prognóstico , Curva ROC , Sensibilidade e Especificidade
19.
Blood ; 133(12): 1313-1324, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30617194

RESUMO

Although generally curable with intensive chemotherapy in resource-rich settings, Burkitt lymphoma (BL) remains a deadly disease in older patients and in sub-Saharan Africa. Epstein-Barr virus (EBV) positivity is a feature in more than 90% of cases in malaria-endemic regions, and up to 30% elsewhere. However, the molecular features of BL have not been comprehensively evaluated when taking into account tumor EBV status or geographic origin. Through an integrative analysis of whole-genome and transcriptome data, we show a striking genome-wide increase in aberrant somatic hypermutation in EBV-positive tumors, supporting a link between EBV and activation-induced cytidine deaminase (AICDA) activity. In addition to identifying novel candidate BL genes such as SIN3A, USP7, and CHD8, we demonstrate that EBV-positive tumors had significantly fewer driver mutations, especially among genes with roles in apoptosis. We also found immunoglobulin variable region genes that were disproportionally used to encode clonal B-cell receptors (BCRs) in the tumors. These include IGHV4-34, known to produce autoreactive antibodies, and IGKV3-20, a feature described in other B-cell malignancies but not yet in BL. Our results suggest that tumor EBV status defines a specific BL phenotype irrespective of geographic origin, with particular molecular properties and distinct pathogenic mechanisms. The novel mutation patterns identified here imply rational use of DNA-damaging chemotherapy in some patients with BL and targeted agents such as the CDK4/6 inhibitor palbociclib in others, whereas the importance of BCR signaling in BL strengthens the potential benefit of inhibitors for PI3K, Syk, and Src family kinases among these patients.


Assuntos
Biomarcadores Tumorais/genética , Linfoma de Burkitt/genética , Infecções por Vírus Epstein-Barr/complicações , Genes de Imunoglobulinas , Genoma Humano , Mutação , Transcriptoma , Adolescente , Adulto , Linfoma de Burkitt/patologia , Linfoma de Burkitt/virologia , Criança , Pré-Escolar , Estudos de Coortes , Citidina Desaminase/genética , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Feminino , Seguimentos , Herpesvirus Humano 4/isolamento & purificação , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Prognóstico , Adulto Jovem
20.
Am J Med Genet A ; 185(8): 2541-2545, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34018669

RESUMO

Prenatal detection of structural variants of uncertain significance, including copy number variants (CNV), challenges genetic counseling, and creates ambiguity for expectant parents. In Duchenne muscular dystrophy, variant classification and phenotypic severity of CNVs are currently assessed by familial segregation, prediction of the effect on the reading frame, and precedent data. Delineation of pathogenicity by familial segregation is limited by time and suitable family members, whereas analytical tools can rapidly delineate potential consequences of variants. We identified a duplication of uncertain significance encompassing a portion of the dystrophin gene (DMD) in an unaffected mother and her male fetus. Using long-read whole genome sequencing and alignment of short reads, we rapidly defined the precise breakpoints of this variant in DMD and could provide timely counseling. The benign nature of the variant was substantiated, more slowly, by familial segregation to a healthy maternal uncle. We find long-read whole genome sequencing of clinical utility in a prenatal setting for accurate and rapid characterization of structural variants, specifically a duplication involving DMD.


Assuntos
Variações do Número de Cópias de DNA , Distrofina/genética , Testes Genéticos/métodos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Diagnóstico Pré-Natal/métodos , Adulto , Pontos de Quebra do Cromossomo , Duplicação Cromossômica , Cromossomos Humanos X , Hibridização Genômica Comparativa , Éxons , Feminino , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Humanos , Masculino , Linhagem , Gravidez , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA