Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Plant Biol ; 18(1): 140, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986660

RESUMO

BACKGROUND: Pongamia (Millettia pinnata syn. Pongamia pinnata), an oilseed legume species, is emerging as potential feedstock for sustainable biodiesel production. Breeding Pongamia for favorable traits in commercial application will rely on a comprehensive understanding of molecular mechanism regulating oil accumulation during its seed development. To date, only limited genomic or transcript sequences are available for Pongamia, while a temporal transcriptome profiling of developing seeds is still lacking in this species. RESULTS: In this work, we conducted a time-series analysis of morphological and physiological characters, oil contents and compositions, as well as global gene expression profiles in developing Pongamia seeds. Firstly, three major developmental phases were characterized based on the combined evidences from embryonic shape, seed weight, seed moisture content, and seed color. Then, the gene expression levels at these three phases were quantified by RNA-Seq analyses with three biological replicates from each phase. Nearly 94% of unigenes were expressed at all three phases, whereas only less than 2% of unigenes were exclusively expressed at one of these phases. A total of 8881 differentially expressed genes (DEGs) were identified between phases. Furthermore, the qRT-PCR analyses for 10 DEGs involved in lipid metabolism demonstrated a good reliability of our RNA-Seq data in temporal gene expression profiling. We observed a dramatic increase in seed oil content from the embryogenesis phase to the early seed-filling phase, followed by a steady and moderate increase towards the maximum at the desiccation phase. We proposed that a highly active expression of most genes related to fatty acid (FA) and triacylglycerol (TAG) biosynthesis at the embryogenesis phase might trigger both the substantial oil accumulation and the membrane lipid synthesis for rapid cell proliferation at this phase, while a concerted reactivation of TAG synthesis-related genes at the desiccation phase might further promote storage lipid synthesis to achieve the maximum content of seed oils. CONCLUSIONS: This study not only built a bridge between gene expression profiles and oil accumulation in developing seeds, but also laid a foundation for future attempts on genetic engineering of Pongamia varieties to acquire higher oil yield or improved oil properties for biofuel applications.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Millettia/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Millettia/genética , Óleos de Plantas/análise , Sementes/química , Sementes/crescimento & desenvolvimento , Transcriptoma
2.
Plant Cell Rep ; 35(11): 2353-2367, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27522520

RESUMO

KEY MESSAGE: Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.


Assuntos
Parede Celular/genética , Inativação Gênica , Genes de Plantas , Lignina/metabolismo , Vírus de Plantas/fisiologia , Metabolismo dos Carboidratos/genética , Fluoresceína-5-Isotiocianato/metabolismo , Regulação da Expressão Gênica de Plantas , Vetores Genéticos/metabolismo , Glucose/metabolismo , Glicômica , Glicosilação , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/anatomia & histologia , Nicotiana/genética , Nicotiana/virologia , Xilema/genética
3.
Plant Cell Rep ; 33(7): 1041-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24585187

RESUMO

KEY MESSAGE: We report a novel approach for enhanced accumulation of fatty acids and triacylglycerols for utilization as biodiesel in transgenic tobacco stems through xylem-specific expression of Arabidopsis DGAT1 and LEC2 genes. The use of plant biomass for production of bioethanol and biodiesel has an enormous potential to revolutionize the global bioenergy outlook. Several studies have recently been initiated to genetically engineer oil production in seeds of crop plants to improve biodiesel production. However, the "food versus fuel" issues have also sparked some studies for enhanced accumulation of oils in vegetative tissues like leaves. But in the case of bioenergy crops, use of woody stems is more practical than leaves. Here, we report the enhanced accumulation of fatty acids (FAs) and triacylglycerols (TAGs) in stems of transgenic tobacco plants expressing Arabidopsis diacylglycerol acyltransferase 1 (DGAT1) and leafy cotyledon2 (LEC2) genes under a developing xylem-specific cellulose synthase promoter from aspen trees. The transgenic tobacco plants accumulated significantly higher amounts of FAs in their stems. On an average, DGAT1 and LEC2 overexpression showed a 63 and 80% increase in total FA production in mature stems of transgenic plants over that of controls, respectively. In addition, selected DGAT1 and LEC2 overexpression lines showed enhanced levels of TAGs in stems with higher accumulation of 16:0, 18:2 and 18:3 TAGs. In LEC2 lines, the relative mRNA levels of the downstream genes encoding plastidic proteins involved in FA synthesis and accumulation were also elevated. Thus, here, we provide a proof of concept for our approach of enhancing total energy yield per plant through accumulation of higher levels of FAs in transgenic stems for biodiesel production.


Assuntos
Proteínas de Arabidopsis/genética , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/metabolismo , Nicotiana/metabolismo , Caules de Planta/metabolismo , Fatores de Transcrição/genética , Triglicerídeos/metabolismo , Proteínas de Arabidopsis/metabolismo , Biocombustíveis , Celulose/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Regulação da Expressão Gênica de Plantas , Caules de Planta/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Xilema/genética , Xilema/crescimento & desenvolvimento
4.
Biotechnol Biofuels Bioprod ; 17(1): 5, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218877

RESUMO

BACKGROUND: Secondary cell wall holds considerable potential as it has gained immense momentum to replace the lignocellulosic feedstock into fuels. Lignin one of the components of secondary cell wall tightly holds the polysaccharides thereby enhancing the recalcitrance and complexity in the biomass. Laccases (LAC) and peroxidases (PRX) are the major phenyl-oxidases playing key functions during the polymerization of monolignols into lignin. Yet, the functions of laccase and peroxidases gene families remained largely unknown. Hence, the objective of this conducted study is to understand the role of specific LAC and PRX in Populus wood formation and to further investigate how the altered Lac and Prx expression affects biomass recalcitrance and plant growth. This study of heterologous expression of Arabidopsis Lac and Prx genes was conducted in poplar to avoid any otherwise occurring co-suppression mechanism during the homologous overexpression of highly expressed native genes. In the pursuit of optimizing lignocellulosic biomass for biofuel production, the present study focuses on harnessing the enzymatic potential of Arabidopsis thaliana Laccase2, Laccase4, and Peroxidase52 through heterologous expression. RESULTS: We overexpressed selected Arabidopsis laccase2 (AtLac2), laccase4 (AtLac4), and peroxidase52 (AtPrx52) genes, based on their high transcript expression respective to the differentiating xylem tissues in the stem, in hybrid poplar (cv. 717) expressed under the developing xylem tissue-specific promoter, DX15 characterized the transgenic populus for the investigation of growth phenotypes and recalcitrance efficiency. Bioinformatics analyses conducted on AtLac2 and AtLac4 and AtPrx52, revealed the evolutionary relationship between the laccase gene and peroxidase gene homologs, respectively. Transgenic poplar plant lines overexpressing the AtLac2 gene (AtLac2-OE) showed an increase in plant height without a change in biomass yield as compared to the controls; whereas, AtLac4-OE and AtPrx52-OE transgenic lines did not show any such observable growth phenotypes compared to their respective controls. The changes in the levels of lignin content and S/G ratios in the transgenic poplar resulted in a significant increase in the saccharification efficiency as compared to the control plants. CONCLUSIONS: Overall, saccharification efficiency was increased by 35-50%, 21-42%, and 8-39% in AtLac2-OE, AtLac4-OE, and AtPrx52-OE transgenic poplar lines, respectively, as compared to their controls. Moreover, the bioengineered plants maintained normal growth and development, underscoring the feasibility of this approach for biomass improvement without compromising overall plant fitness. This study also sheds light on the potential of exploiting regulatory elements of DX15 to drive targeted expression of lignin-modifying enzymes, thereby providing a promising avenue for tailoring biomass for improved biofuel production. These findings contribute to the growing body of knowledge in synthetic biology and plant biotechnology, offering a sustainable solution to address the challenges associated with lignocellulosic biomass recalcitrance.

5.
Plant Mol Biol ; 83(4-5): 317-28, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23771581

RESUMO

Economical production of bioethanol from lignocellulosic biomass still faces many technical limitations. Cost-effective production of fermentable sugars is still not practical for large-scale production of bioethanol due to high costs of lignocellulolytic enzymes. Therefore, plant molecular farming, where plants are used as bioreactors, was developed for the mass production of cell wall degrading enzymes that will help reduce costs. Subcellular targeting is also potentially more suitable for the accumulation of recombinant cellulases. Herein, we generated transgenic tobacco plants (Nicotiana tabacum cv. SR1) that accumulated Thermotoga maritima BglB cellulase, which was driven by the alfalfa RbcsK-1A promoter and contained a small subunit of the rubisco complex transit peptide. The generated transformants possessed high specific BglB activity and did not show any abnormal phenotypes. Furthermore, we genetically engineered the RbcsK-1A promoter (MRbcsK-1A) and fused the amplification promoting sequence (aps) to MRbcsK-1A promoter to obtain high expression of BglB in transgenic plants. AMRsB plant lines with aps-MRbcsK-1A promoter showed the highest specific activity of BglB, and the accumulated BglB protein represented up to 9.3 % of total soluble protein. When BglB was expressed in Arabidopsis and tobacco plants, the maximal production capacity of recombinant BglB was 0.59 and 1.42 mg/g wet weight, respectively. These results suggests that suitable recombinant expression of cellulases in subcellular compartments such as chloroplasts will contribute to the cost-effective production of enzymes, and will serve as the solid foundation for the future commercialization of bioethanol production via plant molecular farming.


Assuntos
Celulase/genética , Cloroplastos/genética , Medicago sativa/genética , Nicotiana/enzimologia , Regiões Promotoras Genéticas/genética , Thermotoga maritima/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Celulase/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Elementos Facilitadores Genéticos/genética , Expressão Gênica , Engenharia Genética , Agricultura Molecular , Dados de Sequência Molecular , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Thermotoga maritima/genética , Nicotiana/genética , Nicotiana/ultraestrutura , Transgenes
6.
Biosci Biotechnol Biochem ; 76(6): 1140-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22790936

RESUMO

Plants are attractive expression systems for large-scale, low-cost production of high-value proteins. The xylanase 2 gene (Xyn2), encoding an endo-ß-1,4-xylanase from Trichoderma reesei, was cloned and expressed in Escherichia coli and the poplar (Populus spp.). The optimal temperature and pH of the recombinant xylanase were 50 °C and 5.0 respectively when expressed in E. coli. The purpose of this study was to produce recombinant xylanase in poplar. The Xyn2 gene was transferred into poplars by Agrobacterium-mediated transformation. The transgenic status and transgene expression of the transformed poplar were confirmed by polymerase chain reaction (PCR) genotyping and reverse transcription (RT)-PCR analysis. The poplar-expressed xylanase was biologically active, with an expression level of up to 14.4% of total leaf soluble protein. In the leaves, the average xylanase content was 1.016 mg per g of leaf fresh weight in the transgenic poplar. We found that the poplar might make possible the large-scale production of commercially important recombinant proteins.


Assuntos
Endo-1,4-beta-Xilanases/genética , Proteínas Fúngicas/genética , Folhas de Planta/genética , Populus/genética , Trichoderma/genética , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Endo-1,4-beta-Xilanases/metabolismo , Escherichia coli , Proteínas Fúngicas/metabolismo , Expressão Gênica , Técnicas de Transferência de Genes , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Populus/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Transgenes , Trichoderma/enzimologia
7.
Plants (Basel) ; 11(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214825

RESUMO

Lignocellulosic biomass from the secondary cell walls of plants has a veritable potential to provide some of the most appropriate raw materials for producing second-generation biofuels. Therefore, we must first understand how plants synthesize these complex secondary cell walls that consist of cellulose, hemicellulose, and lignin in order to deconstruct them later on into simple sugars to produce bioethanol via fermentation. Knotted-like homeobox (KNOX) genes encode homeodomain-containing transcription factors (TFs) that modulate various important developmental processes in plants. While Class I KNOX TF genes are mainly expressed in the shoot apical meristems of both monocot and eudicot plants and are involved in meristem maintenance and/or formation, Class II KNOXTF genes exhibit diverse expression patterns and their precise functions have mostly remained unknown, until recently. The expression patterns of Class II KNOX TF genes in Arabidopsis, namely KNAT3, KNAT4, KNAT5, and KNAT7, suggest that TFs encoded by at least some of these genes, such as KNAT7 and KNAT3, may play a significant role in secondary cell wall formation. Specifically, the expression of the KNAT7 gene is regulated by upstream TFs, such as SND1 and MYB46, while KNAT7 interacts with other cell wall proteins, such as KNAT3, MYB75, OFPs, and BLHs, to regulate secondary cell wall formation. Moreover, KNAT7 directly regulates the expression of some xylan synthesis genes. In this review, we summarize the current mechanistic understanding of the roles of Class II KNOX TFs in secondary cell wall formation. Recent success with the genetic manipulation of Class II KNOX TFs suggests that this may be one of the biotechnological strategies to improve plant feedstocks for bioethanol production.

8.
Trends Plant Sci ; 14(5): 248-54, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19375973

RESUMO

Cellulose synthase (CesA) is a central catalyst in the generation of the plant cell wall biomass and is, therefore, the focus of intense research. Characterization of individual CesA genes from Populus species has led to the publication of several different naming conventions for CesA gene family members in this model tree. To help reduce the resulting confusion, we propose here a new phylogeny-based CesA nomenclature that aligns the Populus CesA gene family with the established Arabidopsis thaliana CesA family structure.


Assuntos
Glucosiltransferases/genética , Populus/enzimologia , Terminologia como Assunto , Filogenia , Proteínas de Plantas/classificação
9.
Front Plant Sci ; 12: 762067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795688

RESUMO

The precise role of KNAT7 transcription factors (TFs) in regulating secondary cell wall (SCW) biosynthesis in poplars has remained unknown, while our understanding of KNAT7 functions in other plants is continuously evolving. To study the impact of genetic modifications of homologous and heterologous KNAT7 gene expression on SCW formation in transgenic poplars, we prepared poplar KNAT7 (PtKNAT7) overexpression (PtKNAT7-OE) and antisense suppression (PtKNAT7-AS) vector constructs for the generation of transgenic poplar lines via Agrobacterium-mediated transformation. Since the overexpression of homologous genes can sometimes result in co-suppression, we also overexpressed Arabidopsis KNAT7 (AtKNAT7-OE) in transgenic poplars. In all these constructs, the expression of KNAT7 transgenes was driven by developing xylem (DX)-specific promoter, DX15. Compared to wild-type (WT) controls, many SCW biosynthesis genes downstream of KNAT7 were highly expressed in poplar PtKNAT7-OE and AtKNAT7-OE lines. Yet, no significant increase in lignin content of woody biomass of these transgenic lines was observed. PtKNAT7-AS lines, however, showed reduced expression of many SCW biosynthesis genes downstream of KNAT7 accompanied by a reduction in lignin content of wood compared to WT controls. Syringyl to Guaiacyl lignin (S/G) ratios were significantly increased in all three KNAT7 knockdown and overexpression transgenic lines than WT controls. These transgenic lines were essentially indistinguishable from WT controls in terms of their growth phenotype. Saccharification efficiency of woody biomass was significantly increased in all transgenic lines than WT controls. Overall, our results demonstrated that developing xylem-specific alteration of KNAT7 expression affects the expression of SCW biosynthesis genes, impacting at least the lignification process and improving saccharification efficiency, hence providing one of the powerful tools for improving bioethanol production from woody biomass of bioenergy crops and trees.

10.
Curr Opin Plant Biol ; 10(3): 220-6, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17468038

RESUMO

Cellulose is the most abundant biopolymer on earth. Despite its simple structure, omnipresence in the plant kingdom, and ever increasing global importance as industrial raw material, the genetic and biochemical regulation of cellulose biosynthesis continues to be unclear. Over the past ten years, the advances in functional genomics have significantly improved our understanding of the processes of cellulose biosynthesis in higher plants. However, for each question answered myriad new unanswered ones have arisen.


Assuntos
Celulose/biossíntese , Plantas/metabolismo , Vias Biossintéticas/fisiologia , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Plantas/genética
11.
J Exp Bot ; 59(3): 681-95, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18281718

RESUMO

Trees constitute the majority of lignocellulosic biomass existing on our planet. Trees also serve as important feedstock materials for various industrial products. However, little is known about the regulatory mechanisms of cellulose synthase (CesA) genes of trees. Here, the cloning and characterization of three CesA genes (EgraCesA1, EgraCesA2, and EgraCesA3) from an economically important tree species, Eucalyptus grandis, are reported. All three genes were specifically expressed in xylem cells of eucalyptus undergoing secondary cell wall biosynthesis. The GUS gene, expressed under the control of the EgraCesA2 or EgraCesA3 promoter, was also localized in the secondary xylem in transgenic tobacco stems. However, the EgraCesA1 promoter alone or along with its 5'-UTR introns was insufficient to direct appropriate GUS expression. EgraCesA2 and EgraCesA3 gene expression was up-regulated in tension-stressed eucalyptus xylem cells. Accordingly, GUS expression directed by the EgraCesA2 or EgraCesA3 promoter was also up-regulated. EgraCesA1 had no such response. Thus, it is most unlikely that EgraCesA1 is a subunit of the EgraCesA2-EgraCesA3 complex. The presence of at least two types of cellulose biosynthesis machinery in wood formation is an important clue in deciphering the underpinnings of the perennial growth of trees in various environmental conditions. By analysing GUS gene expression directed by the EgraCesA3 promoter or its deletions, several negative and positive regulatory regions controlling gene expression in xylem or phloem were identified. Also a region which is likely to contain mechanical stress-responsive elements was deduced. These results will guide further studies on identifying cis-regulatory elements directing CesA gene transcription and wood formation regulatory networks.


Assuntos
Adaptação Fisiológica , Eucalyptus/enzimologia , Glucosiltransferases/metabolismo , Árvores/enzimologia , Xilema/enzimologia , Parede Celular/enzimologia , Clonagem Molecular , DNA Complementar , Eucalyptus/genética , Eucalyptus/fisiologia , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Regiões Promotoras Genéticas , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Estresse Mecânico , Árvores/genética , Árvores/fisiologia , Madeira/metabolismo , Xilema/crescimento & desenvolvimento
12.
Gene ; 334: 73-82, 2004 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-15256257

RESUMO

Based on elegant molecular genetic analyses, distinct classes of cellulose synthase (CesA) genes have been associated with either primary or secondary cell wall development in Arabidopsis. Here, we report on cloning of two new CesA cDNAs, PtrCesA6 and PtrCesA7 involved in the primary cell wall development in aspen (Populus tremuloides) trees. Both these distinct cDNAs, isolated from a developing xylem cDNA library, share only 60-67% identities with each other as well as with five other previously known aspen CesA cDNAs. Interestingly, PtrCESA6 from aspen, a dicot species, shares maximum identity of 81-84% with three CESA isoforms from maize and rice, two monocot species. On the other hand, PtrCESA7 shares a maximum identity of 86% with AtCESA2, a primary wall-related CesA member from Arabidopsis, a dicot species. Gene expression analyses by reverse transcriptase-polymerase chain reactions (RT-PCRs) suggested that both these genes are expressed at a low level in all aspen tissues examined but PtrCesA7 is expressed at a higher level than PtrCesA6. While corroborating these results, in situ mRNA hybridization studies using three different aspen organs also suggested that PtrCesA6 and PtrCesA7 genes are expressed in all expanding cells depositing primary cell wall but PtrCesA7 is expressed at a higher level than PtrCesA6. These differential gene expression profiles suggest that each of these CesAs may be playing a specific role during primary cell wall development in aspen trees. Isolation of two primary wall related CesA genes from xylem tissues also suggest their importance during xylem development, which is traditionally considered to be enriched in secondary cell wall forming cells of economical significance.


Assuntos
Parede Celular/enzimologia , Perfilação da Expressão Gênica , Glucosiltransferases/genética , Isoenzimas/genética , Populus/genética , Southern Blotting , DNA Complementar/química , DNA Complementar/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Dados de Sequência Molecular , Família Multigênica , Filogenia , Populus/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
13.
Gene ; 296(1-2): 37-44, 2002 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12383501

RESUMO

We report here the molecular cloning and characterization of a new full-length cellulose synthase (CesA) cDNA, PtrCesA2 from aspen (Populus tremuloides) trees. The predicted PtrCesA2 protein shows a high degree of identity/similarity (87%/91%) to the predicted gene product of Arabidopsis AtCesA7 gene that has been associated with secondary cell wall development. Previously, a mutation in AtCesA7 gene (irx3) was correlated with a significant decrease in the amount of cellulose synthesized (about 70%) and genetic complementation of irx3 mutant with a wild-type AtCesA7 gene restored the normal phenotype. This is the first report of a full-length AtCesA7 ortholog from any non-Arabidopsis species. Interestingly, PtrCesA2 shares only 64% identity with our earlier reported PtrCesA1 from aspen suggesting its structural distinctness from the only other known CesA member from the aspen genome. PtrCesA1 is a xylem-specific and tension stress responsive gene that is highly similar to another Arabidopsis gene, AtCesA8 which also has been associated with secondary wall development. Moreover, AtCesA7 and AtCesA8 are suggested to be part of the same cellulose synthase complex. Isolation of PtrCesA2 from a xylem library enriched in cells with active secondary wall synthesis, PtrCesA2 expression levels similar to PtrCesA1 and high similarity of PtrCesA1 and PtrCesA2 to AtCesA8 and AtCesA7, respectively, suggest that both these aspen genes might be involved in the secondary wall development in aspen woody tissues. Availability of two aspen CesA orthologs will now enable us to examine if PtrCesA1 and PtrCesA2 functionally interact during aspen wood development that has long-term implications on genetic improvement of forest trees.


Assuntos
Parede Celular/metabolismo , Celulose/biossíntese , Glicosiltransferases/genética , Estruturas Vegetais/genética , Populus/genética , Proteínas de Arabidopsis/genética , Northern Blotting , DNA Complementar/química , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Filogenia , Estruturas Vegetais/enzimologia , Populus/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
14.
New Phytol ; 164(1): 53-61, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33873484

RESUMO

Genetic improvement of cellulose production in commercially important trees is one of the formidable goals of current forest biotechnology research. To achieve this goal, we must first decipher the enigmatic and complex process of cellulose biosynthesis in trees. The recent availability of rich genomic resources in poplars make Populus the first tree genus for which genetic augmentation of cellulose may soon become possible. Fortunately, because of the structural conservation of key cellulose biosynthesis genes between Arabidopsis and poplar genomes, the lessons learned from exploring the functions of Arabidopsis genes may be applied directly to poplars. However, regulation of these genes will most likely be distinct in these two-model systems because of their inherent biological differences. This research review covers the current state of knowledge about the three major cellulose biosynthesis-related gene families from poplar genomes: cellulose synthases, sucrose synthases and korrigan cellulases. Furthermore, we also suggest some future research directions that may have significant economical impacts on global forest product industries.

15.
Physiol Plant ; 120(4): 631-641, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15032825

RESUMO

Genetic improvement of cell wall polymer synthesis in forest trees is one of the major goals of forest biotechnology that could possibly impact their end product utilization. Identification of genes involved in cell wall polymer biogenesis is essential for achieving this goal. Among various candidate cell wall-related genes, cellulose synthase-like D (CSLD) genes are intriguing due to their hitherto unknown functions in cell wall polymer synthesis but strong structural similarity with cellulose synthases (CesAs) involved in cellulose deposition. Little is known about CSLD genes from trees. In the present article PtrCSLD2, a first CSLD gene from an economically important tree, aspen (Populus tremuloides) is reported. PtrCSLD2 cDNA was isolated from an aspen xylem cDNA library and encodes a protein that shares 90% similarity with Arabidopsis AtCSLD3 protein involved in root hair tip growth. It is possible that xylem fibers that also grow by intrusive tip growth may need expression of PtrCSLD2 for controlling the length of xylem fibers, a wood quality trait of great economical importance. PtrCSLD2 protein has a N-terminal cysteine-rich putative zinc-binding domain; eight transmembrane domains; alternating conserved and hypervariable domains; and a processive glycosyltransferases signature, D, D, D, QXXRW; all similar to aspen CesA proteins. However, PtrCSLD2 shares only 43-48% overall identity with the known aspen CesAs suggesting its distinct functional role in cell wall polymer synthesis perhaps other than cellulose biosynthesis. Based on Southern analysis, the aspen CSLD gene family consists of at least three genes and this gene copy estimate is supported by phylogenetic analysis of available CSLDs from plants. Moreover, gene expression studies using RT-PCR and in situ mRNA hybridization showed that PtrCSLD2 is expressed at a low level in all aspen tissues examined with a slightly higher expression level in secondary cell wall-enriched aspen xylem as compared to primary cell wall enriched tissues. Together, these observations suggest that PtrCSLD2 gene may be involved in the synthesis of matrix polysaccharides that are dominant in secondary cell walls of poplar xylem. Future molecular genetic analyses will clarify the functional significance of CSLD genes in the development of woody trees.

16.
Tree Physiol ; 24(5): 543-50, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14996658

RESUMO

Recent molecular genetic data suggest that cellulose synthase (CesA) genes coding for the enzymes that catalyze cellulose biosynthesis (CESAs) in Arabidopsis and other herbaceous plants belong to a large gene family. Much less is known about CesA genes from forest trees. To isolate new CesA genes from tree species, discriminative but easily obtainable homologous DNA probes are required. Hypervariable regions (HVRII) of CesA genes represent highly divergent DNA sequences that can be used to examine structural, expressional and functional relationships among CesA genes. We used a reverse transcriptase-polymerase chain reaction (RT-PCR)-based technique to identify HVRII regions from eight types of CesA genes and two types of CesA-like D (CslD) genes in quaking aspen (Populus tremuloides Michx.). Comparison of these aspen CESA/CSLD HVRII regions with the predicted proteins from eight full-length CesA/CslD cDNAs available in our laboratory and with searches for aspen CesA/CslD homologs in the recently released Populus trichocarpa Torr. & A. Gray. genome confirmed the utility of this approach in identifying several CesA/CslD gene members from the Populus genome. Phylogenetic analysis of 56 HVRII domains from a variety of plant species suggested that at least six distinct classes of CESAs exist in plants, supporting a previous proposal for renaming HVRII regions as class-specific regions (CSR). This method of CSR cloning could be applied to other crop plants and tree species, especially softwoods, for which the whole genome sequence is unlikely to become available in the near future because of the large size of these genomes.


Assuntos
Genes de Plantas/genética , Glucosiltransferases/genética , Populus/genética , Árvores/genética , Clonagem Molecular , Filogenia , Reação em Cadeia da Polimerase , Homologia de Sequência do Ácido Nucleico
17.
Appl Biochem Biotechnol ; 105 -108: 17-25, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12721472

RESUMO

Genetic improvement of cellulose biosynthesis in woody trees is one of the major goals of tree biotechnology research. Yet, progress in this field has been slow owing to (1) unavailability of key genes from tree genomes, (2) the inability to isolate active and intact cellulose synthase complexes and, (3) the limited understanding of the mechanistic processes involved in the wood cellulose development. Here I report on the recent advances in molecular genetics of cellulose synthases (CesA) from aspen trees. Two different types of cellulose synthases appear to be involved in cellulose deposition in primary and secondary walls in aspen xylem. The three distinct secondary CesAs from aspen- PtrCesA1, PtrCesA2, and PtrCesA3-appear to be aspen homologs of Arabidopsis secondary CesAs AtCesA8, AtCesA7, and AtCesA4, respectively, based on their high identity/similarity (>80%). These aspen CesA proteins share the transmembrane domain (TMD) structure that is typical of all known "true" CesA proteins: two TMDs toward the N-terminal and six TMDs toward the C-terminal. The putative catalytic domain is present between TMDs 2 and 3. All signature motifs of processive glycosyltransferases are also present in this catalytic domain. In a phylogenetic tree based on various predicted CesA proteins from Arabidopsis and aspen, aspen CesAs fall into families similar to those seen with Arabidopsis CesAs, suggesting their functional similarity. The coordinate expression of three aspen secondary CesAs in xylem and phloem fibers, along with their simultaneous tension stress-responsive upregulation, suggests that these three CesAs may play a pivotal role in biosynthesis of better-quality cellulose in secondary cell walls of plants. These results are likely to have a direct impact on genetic manipulation of trees in the future.


Assuntos
Celulose/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Populus/enzimologia , Arabidopsis/enzimologia , Arabidopsis/genética , Celulose/biossíntese , Regulação Enzimológica da Expressão Gênica , Estruturas Vegetais/enzimologia , Populus/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética
18.
Tree Physiol ; 32(11): 1403-12, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23076823

RESUMO

All known orthologs of a secondary wall-associated cellulose synthase (CesA) gene from Arabidopsis, AtCesA8, encode CesA proteins with two consecutive methionines at their N-termini (MM or 2M). Here, we report that these 2Ms in an aspen ortholog of AtCesA8, PtdCesA8A, are important for maintaining normal wood cellulose biosynthesis in aspen trees. Overexpression of an altered PtdCesA8A cDNA encoding a PtdCesA8A protein missing one methionine at the N-terminus (1M) in aspen resulted in substantial decrease in cellulose content and caused negative effects on wood strength, suggesting that both methionines are essential for proper CesA expression and function in developing xylem tissues. Transcripts from a pair of paralogous native PtdCesA8 genes, as well as introduced PtdCesA8A:1M transgenes were significantly reduced in developing xylem tissues of transgenic aspen plants, suggestive of a co-suppression event. Overexpression of a native PtdCesA8A cDNA encoding a CesA protein with 2Ms at the N-terminus did not cause any such phenotypic changes. These results suggest the importance of 2Ms present at the N-terminus of PtdCesA8A protein during cellulose synthesis in aspen.


Assuntos
Parede Celular/metabolismo , Celulose/biossíntese , Glucosiltransferases/genética , Metionina/metabolismo , Populus/enzimologia , Sequência de Aminoácidos , Carboidratos/análise , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Lignina/metabolismo , Magnoliopsida/enzimologia , Magnoliopsida/genética , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/anatomia & histologia , Populus/genética , Alinhamento de Sequência , Árvores , Madeira/metabolismo , Xilema/anatomia & histologia , Xilema/enzimologia , Xilema/genética
19.
Mol Plant ; 4(2): 331-45, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21300756

RESUMO

Genetic manipulation of cellulose biosynthesis in trees may provide novel insights into the growth and development of trees. To explore this possibility, the overexpression of an aspen secondary wall-associated cellulose synthase (PtdCesA8) gene was attempted in transgenic aspen (Populus tremuloides L.) and unexpectedly resulted in silencing of the transgene as well as its endogenous counterparts. The main axis of the transgenic aspen plants quickly stopped growing, and weak branches adopted a weeping growth habit. Furthermore, transgenic plants initially developed smaller leaves and a less extensive root system. Secondary xylem (wood) of transgenic aspen plants contained as little as 10% cellulose normalized to dry weight compared to 41% cellulose typically found in normal aspen wood. This massive reduction in cellulose was accompanied by proportional increases in lignin (35%) and non-cellulosic polysaccharides (55%) compared to the 22% lignin and 36% non-cellulosic polysaccharides in control plants. The transgenic stems produced typical collapsed or 'irregular' xylem vessels that had altered secondary wall morphology and contained greatly reduced amounts of crystalline cellulose. These results demonstrate the fundamental role of secondary wall cellulose within the secondary xylem in maintaining the strength and structural integrity required to establish the vertical growth habit in trees.


Assuntos
Celulose/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Populus/genética
20.
Mol Plant ; 3(5): 818-33, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20522525

RESUMO

Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.


Assuntos
Parede Celular/metabolismo , Inativação Gênica/fisiologia , Nicotiana/citologia , Nicotiana/genética , Vírus de Plantas/fisiologia , Parede Celular/genética , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA