Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(3): 1647-1661, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33406257

RESUMO

Sensing of environmental cues is crucial for cell survival. To adapt to changes in their surroundings cells need to tightly control the repertoire of genes expressed at any time. Regulation of translation is key, especially in organisms in which transcription is hardly controlled, like Trypanosoma brucei. In this study, we describe the shortening of the bulk of the cellular tRNAs during stress at the expense of the conserved 3' CCA-tail. This tRNA shortening is specific for nutritional stress and renders tRNAs unsuitable substrates for translation. We uncovered the nuclease LCCR4 (Tb927.4.2430), a homologue of the conserved deadenylase Ccr4, as being responsible for tRNA trimming. Once optimal growth conditions are restored tRNAs are rapidly repaired by the trypanosome tRNA nucleotidyltransferase thus rendering the recycled tRNAs amenable for translation. This mechanism represents a fast and efficient way to repress translation during stress, allowing quick reactivation with a low energy input.


Assuntos
RNA de Transferência/metabolismo , Ribonucleases/metabolismo , Estresse Fisiológico/genética , Trypanosoma brucei brucei/enzimologia , Biossíntese de Proteínas , RNA de Transferência/química , Trypanosoma brucei brucei/genética
2.
Nat Commun ; 10(1): 118, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631057

RESUMO

In the absence of extensive transcription control mechanisms the pathogenic parasite Trypanosoma brucei crucially depends on translation regulation to orchestrate gene expression. However, molecular insight into regulating protein biosynthesis is sparse. Here we analyze the small non-coding RNA (ncRNA) interactome of ribosomes in T. brucei during different growth conditions and life stages. Ribosome-associated ncRNAs have recently been recognized as unprecedented regulators of ribosome functions. Our data show that the tRNAThr 3´half is produced during nutrient deprivation and becomes one of the most abundant tRNA-derived RNA fragments (tdRs). tRNAThr halves associate with ribosomes and polysomes and stimulate translation by facilitating mRNA loading during stress recovery once starvation conditions ceased. Blocking or depleting the endogenous tRNAThr halves mitigates this stimulatory effect both in vivo and in vitro. T. brucei and its close relatives lack the well-described mammalian enzymes for tRNA half processing, thus hinting at a unique tdR biogenesis in these parasites.


Assuntos
Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Ribossomos/genética , Trypanosoma brucei brucei/genética , Polirribossomos/genética , Polirribossomos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , Ribossomos/metabolismo , Estresse Fisiológico , Trypanosoma brucei brucei/metabolismo
3.
J Mol Biol ; 428(10 Pt B): 2237-47, 2016 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-27067112

RESUMO

Stationary-phase bacterial cells are characterized by vastly reduced metabolic activities yielding a dormant-like phenotype. Several hibernation programs ensure the establishment and maintenance of this resting growth state. Some of the stationary phase-specific modulations affect the ribosome and its translational activity directly. In stationary-phase Escherichia coli, we observed the appearance of a 16S rRNA fragmentation event at the tip of helix 6 within the small ribosomal subunit (30S). Stationary-phase 30S subunits showed markedly reduced activities in protein biosynthesis. On the other hand, the functional performance of stationary-phase large ribosomal subunits (50S) was indistinguishable from particles isolated from exponentially growing cells. Introduction of the 16S rRNA cut in vitro at helix 6 of exponential phase 30S subunits renders them less efficient in protein biosynthesis. This indicates that the helix 6 fragmentation is necessary and sufficient to attenuate translational activities of 30S ribosomal subunits. These results suggest that stationary phase-specific cleavage of 16S rRNA within the 30S subunit is an efficient means to reduce global translation activities under non-proliferating growth conditions.


Assuntos
Escherichia coli/genética , RNA Ribossômico 16S/genética , Subunidades Ribossômicas/genética , Conformação de Ácido Nucleico , Biossíntese de Proteínas/genética , Proteínas Ribossômicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA