Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nanotechnology ; 27(12): 125302, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26890062

RESUMO

Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He(+) and Ne(+) beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne(+) beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

2.
Microsc Microanal ; 17(4): 643-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21736856

RESUMO

Because the ability to perform some form of chemical microanalysis has become an essential feature for any microscope, it is necessary to investigate what options are available in the new "ORION" helium ion microscope (HIM). The HIM has the ability to visualize local variations in specimen chemistry in both the ion induced secondary electron and the Rutherford backscattered imaging modes, but this provides only limited and qualitative information. Quantitative, elementally specific, microanalysis could be performed in the HIM using secondary electron spectroscopy, Rutherford backscattered ion spectroscopy, or secondary ion mass spectroscopy, but while each of these options has promise, none of them can presently guarantee either reliable element identification or quantitative analysis across the periodic table.

3.
Appl Environ Microbiol ; 76(24): 7981-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20952651

RESUMO

Interest in engineered nanostructures has risen in recent years due to their use in energy conservation strategies and biomedicine. To ensure prudent development and use of nanomaterials, the fate and effects of such engineered structures on the environment should be understood. Interactions of nanomaterials with environmental microorganisms are inevitable, but the general consequences of such interactions remain unclear, due to a lack of standard methods for assessing such interactions. Therefore, we have initiated a multianalytical approach to understand the interactions of synthesized nanoparticles with bacterial systems. These efforts are focused initially on cerium oxide nanoparticles and model bacteria in order to evaluate characterization procedures and the possible fate of such materials in the environment. The growth and viability of the Gram-negative species Escherichia coli and Shewanella oneidensis, a metal-reducing bacterium, and the Gram-positive species Bacillus subtilis were examined relative to cerium oxide particle size, growth media, pH, and dosage. A hydrothermal synthesis approach was used to prepare cerium oxide nanoparticles of defined sizes in order to eliminate complications originating from the use of organic solvents and surfactants. Bactericidal effects were determined from MIC and CFU measurements, disk diffusion tests, and live/dead assays. For E. coli and B. subtilis, clear strain- and size-dependent inhibition was observed, whereas S. oneidensis appeared to be unaffected by the particles. Transmission electron microscopy along with microarray-based transcriptional profiling was used to understand the response mechanism of the bacteria. Use of multiple analytical approaches adds confidence to toxicity assessments, while the use of different bacterial systems highlights the potential wide-ranging effects of nanomaterial interactions in the environment.


Assuntos
Antibacterianos/toxicidade , Bacillus subtilis/efeitos dos fármacos , Cério/toxicidade , Escherichia coli/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Nanopartículas , Shewanella/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/fisiologia , Contagem de Colônia Microbiana , Meios de Cultura/química , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Shewanella/crescimento & desenvolvimento , Shewanella/fisiologia
4.
Nanotechnology ; 21(17): 175302, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20357409

RESUMO

The details of a Monte Carlo helium ion beam induced deposition simulation are introduced and initial results for reaction rate and mass transport limited growth regimes are presented. Reaction rate limited growth leads to fast vertical growth from incident primary ions and minimal lateral broadening, whereas mass transport limited growth has lower vertical growth velocity and exhibits broadening due to scattered ions and secondary electrons. The results are compared to recent experiments and previous electron beam induced deposition simulations.

5.
Scanning ; 29(4): 171-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17598177

RESUMO

Electron-beam-induced deposition (EBID) and etching (EBIE) provides a simple way to fabricate or etch submicron or nanoscale structures of various materials in a direct-write (i.e.nonlithographic) fashion. The growth rate or the etch rate are influenced by many factors such as beam energy, beam current, temperature of the substrate material, pressure of the chamber, and geometry of the gas injector etc. The mechanism of EBID and EBIE involves the interaction of the incident electron beam or emitted electron from the target material. The role of these electrons is still not completely understood although the contribution of low energy secondary electrons (SE) has been assumed to be the dominant contributor of EBID and EBIE based on its overlap with the dissociation cross section. We have studied the growth and etching phenomenon under various biasing conditions to investigate how low voltage biasing of the substrate affects secondary electron trajectories and subsequently modifies electron-beam-induced deposition and etching.

6.
Scanning ; 29(1): 1-4, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17330253

RESUMO

Although electron beams with energies of a few keV can excite fluorescent X-ray production from solids, ion beams of comparable energy cannot do so. The reason for this situation is that it is the velocity of the incident particle, rather than its energy, which determines whether an ionization event can be generated.

7.
Nanoscale ; 9(35): 12949-12956, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28831493

RESUMO

Direct write with a liquid precursor using an ion beam in situ, allows fabrication of nanostructures with higher purity than using gas phase deposition. Specifically, positively charged helium ions, when compared to electrons, localize the reaction zone to a single-digit nanometer scale. However, to control the interaction of the ion beam with the liquid precursor, as well as enable single digit fabrication, a comprehensive understanding of the radiolytic process, and the role of secondary electrons has to be developed. Here, we demonstrate an approach for directly writing platinum nanostructures from aqueous solution using a helium ion microscope, and discuss possible mechanisms for the beam-induced particle growth in the framework of Born-Oppenheimer and real-time electron dynamics models. We illustrate the nanoparticle nucleation and growth parameters through data analysis of in situ acquired movie data, and correlate these results to a fully encompassing, time-dependent, quantum dynamical simulation that takes into account both quantum and classical interactions. Finally, sub-15 nm resolution platinum structures generated in liquid are demonstrated.

8.
Scanning ; 28(3): 133-41, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16878784

RESUMO

Experimental nanotips have shown significant improvement in the resolution performance of a cold field emission scanning electron microscope (SEM). Nanotip electron sources are very sharp electron emitter tips used as a replacement for the conventional tungsten field emission (FE) electron sources. Nanotips offer higher brightness and smaller electron source size. An electron microscope equipped with a nanotip electron gun can provide images with higher spatial resolution and with better signal-to-noise ratio. This could present a considerable advantage over the current SEM electron gun technology if the tips are sufficiently long-lasting and stable for practical use. In this study, an older field-emission critical dimension (CD) SEM was used as an experimental test platform. Substitution of tungsten nanotips for the regular cathodes required modification of the electron gun circuitry and preparation of nanotips that properly fit the electron gun assembly. In addition, this work contains the results of the modeling and theoretical calculation of the electron gun performance for regular and nanotips, the preparation of the SEM including the design and assembly of a measuring system for essential instrument parameters, design and modification of the electron gun control electronics, development of a procedure for tip exchange, and tests of regular emitter, sharp emitter and nanotips. Nanotip fabrication and characterization procedures were also developed. Using a "sharp" tip as an intermediate to the nanotip clearly demonstrated an improvement in the performance of the test SEM. This and the results of the theoretical assessment gave support for the installation of the nanotips as the next step and pointed to potentially even better performance. Images taken with experimental nanotips showed a minimum two-fold improvement in resolution performance than the specification of the test SEM. The stability of the nanotip electron gun was excellent; the tip stayed useful for high-resolution imaging for several hours during many days of tests. The tip lifetime was found to be several months in light use. This paper summarizes the current state of the work and points to future possibilities that will open when electron guns can be designed to take full advantage of the nanotip electron emitters.

9.
Scanning ; 28(6): 311-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17181132

RESUMO

Electron beam-induced deposition (EBID) provides a simple way to fabricate submicron- or nanometer-scale structures from various elements in a scanning electron microscope (SEM). The growth rate and shape of the deposits are influenced by many factors. We have studied the growth rate and morphology of EBID-deposited nanostructures as a function of the tungsten hexafluoride (WF6) and tetraethylorthosilicate (TEOS) precursor gas pressure and growth time, and we have used Monte Carlo simulations to model the growth of tungsten and silicon oxide to elucidate the mechanisms involved in the EBID growth. The lateral radius of the deposit decreases with increasing pressure because of the enhanced vertical growth rate which limits competing lateral broadening produced by secondary and forward-scattered electrons. The morphology difference between the conical SiO(x) and the cylindrical W nanopillars is related to the difference in interaction volume between the two materials. A key parameter is the residence time of the precursor gas molecules. This is an exponential function of the surface temperature; it changes during nanopillar growth and is a function of the nanopillar material and the beam conditions.

10.
Sci Rep ; 6: 30481, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27480346

RESUMO

Development of devices and structures based on the layered 2D materials critically hinges on the capability to induce, control, and tailor the electronic, transport, and optoelectronic properties via defect engineering, much like doping strategies have enabled semiconductor electronics and forging enabled introduction the of iron age. Here, we demonstrate the use of a scanning helium ion microscope (HIM) for tailoring the functionality of single layer MoSe2 locally, and decipher associated mechanisms at the atomic level. We demonstrate He(+) beam bombardment that locally creates vacancies, shifts the Fermi energy landscape and increases the Young's modulus of elasticity. Furthermore, we observe for the first time, an increase in the B-exciton photoluminescence signal from the nanoforged regions at the room temperature. The approach for precise defect engineering demonstrated here opens opportunities for creating functional 2D optoelectronic devices with a wide range of customizable properties that include operating in the visible region.

11.
Nat Mater ; 8(10): 776-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19773787
12.
Scanning ; 27(6): 293-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16370397

RESUMO

In the variable pressure scanning electron microscope (VP-SEM) the incident electrons pass through a gaseous environment and the beam is scattered by these interactions. We show here that the experimental intensity profile of the scattered beam can be described as Gaussian in form to a high level of accuracy. This provides a rapid means of accounting for the effects of beam scatter in imaging and microanalysis because the standard deviation of the Gaussian is a simple function of parameters such as working distance, beam energy, gas type and pressure.

13.
Sci Rep ; 5: 11952, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26150202

RESUMO

The remarkable mechanical and electronic properties of graphene make it an ideal candidate for next generation nanoelectronics. With the recent development of commercial-level single-crystal graphene layers, the potential for manufacturing household graphene-based devices has improved, but significant challenges still remain with regards to patterning the graphene into devices. In the case of graphene supported on a substrate, traditional nanofabrication techniques such as e-beam lithography (EBL) are often used in fabricating graphene nanoribbons but the multi-step processes they require can result in contamination of the graphene with resists and solvents. In this letter, we report the utility of scanning helium ion lithography for fabricating functional graphene nanoconductors that are supported directly on a silicon dioxide layer, and we measure the minimum feature size achievable due to limitations imposed by thermal fluctuations and ion scattering during the milling process. Further we demonstrate that ion beams, due to their positive charging nature, may be used to observe and test the conductivity of graphene-based nanoelectronic devices in situ.

14.
Ultramicroscopy ; 94(3-4): 277-81, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12524197

RESUMO

Voltage profiles of the source-drain region of a CMOS transistor with 75nm gate architecture taken from an off-the-shelf Intel PIII processor are presented. The sample preparation using a dual beam system is discussed as well as details of the electron optical setup of the microscope. Special attention is given to the analysis of the reconstructed holograms.


Assuntos
Holografia/métodos , Microscopia Eletrônica de Varredura/métodos , Eletricidade , Transistores Eletrônicos
15.
Microsc Microanal ; 7(2): 159-167, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12597828

RESUMO

Quantitative X-ray microanalysis requires the use of many fundamental constants related to the interaction of the electron beam with the sample. The current state of our knowledge of such constants in the particular areas of electron stopping power, X-ray ionization cross-sections, X-ray fluorescence yield, and the electron backscattering yield, is examined. It is found that, in every case, the quality and quantity of data available is poor, and that there are major gaps remaining to be filled.

16.
Scanning ; 26(5): 226-34, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15536978

RESUMO

Charging is one of the most important problems encountered in scanning electron microscopy and as a result this phenomenon it has received a lot of both theoretical and experimental attention. Despite this, many questions remain about the nature and behavior of charging because of the limitations of the experimental techniques available to study it. For example, although it is now straightforward to determine in situ the surface potential of a sample that is charging during irradiation, it is difficult to measure the lateral extent of the charging, or its persistence once the incident beam is switched off. We describe here a simple technique which provides a rapid way of visualizing the temporal and spatial behavior of charging phenomena.

17.
Scanning ; 25(4): 194-200, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12926611

RESUMO

Charge accumulation in insulating or semiconducting samples due to electron beam irradiation is one of the key problems in electron microscopy. One of the most promising techniques for reducing the severity of such charging is to surround the sample with a low-pressure atmosphere of a gas. The charging behavior of a number of materials, surrounded by a variety of gases, has been determined to identify the important factors which control charging under these conditions. The magnitude of the surface potential was deduced from an analysis of x-ray spectra from the surface. The relationship between surface charge, gas pressure, and gas type are measured, and the charging reduction efficiency (CRE) is compared.

18.
Scanning ; 24(4): 171-4, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12166803

RESUMO

A simple method is described to determine the effective gas path length when incident electrons scatter in the gas above the specimen. This method is based on the measurement of a characteristic x-ray line emitted from a region close to the incident beam. From various experimental measurements performed on various microscopes, it is shown that the effective gas path length may increase with the chamber pressure and that it is also often dependent of the type of x-ray bullet.

19.
Scanning ; 36(3): 338-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23897710

RESUMO

Electron microscopy is an essential tool for the evaluation of microstructure and properties of the catalyst layer (CL) of proton exchange membrane fuel cells (PEMFCs). However, electron microscopy has one unavoidable drawback, which is radiation damage. Samples suffer temporary or permanent change of the surface or bulk structure under radiation damage, which can cause ambiguity in the characterization of the sample. To better understand the mechanism of radiation damage of CL samples and to be able to separate the morphological features intrinsic to the material from the consequences of electron radiation damage, a series of experiments based on high-angle annular dark-field-scanning transmission scanning microscope (HAADF-STEM), energy filtering transmission scanning microscope (EFTEM), and electron energy loss spectrum (EELS) are conducted. It is observed that for thin samples (0.3-1 times λ), increasing the incident beam energy can mitigate the radiation damage. Platinum nanoparticles in the CL sample facilitate the radiation damage. The radiation damage of the catalyst sample starts from the interface of Pt/C or defective thin edge and primarily occurs in the form of mass loss accompanied by atomic displacement and edge curl. These results provide important insights on the mechanism of CL radiation damage. Possible strategies of mitigating the radiation damage are provided.


Assuntos
Artefatos , Fontes de Energia Bioelétrica , Elétrons , Membranas/efeitos da radiação , Radiação , Microscopia Eletrônica de Varredura , Prótons
20.
Scanning ; 35(1): 1-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22589040

RESUMO

Generally, in scanning electron microscopy (SEM) imaging, it is desirable that a high-resolution image be composed mainly of those secondary electrons (SEs) generated by the primary electron beam, denoted SE(I) . However, in conventional SEM imaging, other, often unwanted, signal components consisting of backscattered electrons (BSEs), and their associated SEs, denoted SE(II) , are present; these signal components contribute a random background signal that degrades contrast, and therefore signal-to-noise ratio and resolution. Ideally, the highest resolution SEM image would consist only of the SE(I) component. In SEMs that use conventional pinhole lenses and their associated Everhart-Thornley detectors, the image is composed of several components, including SE(I) , SE(II) , and some BSE, depending on the geometry of the detector. Modern snorkel lens systems eliminate the BSEs, but not the SE(II) s. We present a microfabricated diaphragm for minimizing the unwanted SE(II) signal components. We present evidence of improved imaging using a microlithographically generated pattern of Au, about 500 nm thick, that blocks most of the undesired signal components, leaving an image composed mostly of SE(I) s. We refer to this structure as a "spatial backscatter diaphragm."

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA