Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(3): 684-694.e9, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768891

RESUMO

Monkeypox (MPXV) and cowpox (CPXV) are emerging agents that cause severe human infections on an intermittent basis, and variola virus (VARV) has potential for use as an agent of bioterror. Vaccinia immune globulin (VIG) has been used therapeutically to treat severe orthopoxvirus infections but is in short supply. We generated a large panel of orthopoxvirus-specific human monoclonal antibodies (Abs) from immune subjects to investigate the molecular basis of broadly neutralizing antibody responses for diverse orthopoxviruses. Detailed analysis revealed the principal neutralizing antibody specificities that are cross-reactive for VACV, CPXV, MPXV, and VARV and that are determinants of protection in murine challenge models. Optimal protection following respiratory or systemic infection required a mixture of Abs that targeted several membrane proteins, including proteins on enveloped and mature virion forms of virus. This work reveals orthopoxvirus targets for human Abs that mediate cross-protective immunity and identifies new candidate Ab therapeutic mixtures to replace VIG.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Infecções por Poxviridae/imunologia , Varíola Bovina/imunologia , Vírus da Varíola Bovina/imunologia , Reações Cruzadas , Humanos , Leucócitos Mononucleares/imunologia , Mpox/imunologia , Monkeypox virus/imunologia , Varíola/imunologia , Vacínia/imunologia , Vaccinia virus/imunologia , Vírus da Varíola/imunologia
2.
EMBO J ; 42(7): e111450, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36861806

RESUMO

Membrane ion channels of the calcium homeostasis modulator (CALHM) family promote cell-cell crosstalk at neuronal synapses via ATP release, where ATP acts as a neurotransmitter. CALHM6, the only CALHM highly expressed in immune cells, has been linked to the induction of natural killer (NK) cell anti-tumour activity. However, its mechanism of action and broader functions in the immune system remain unclear. Here, we generated Calhm6-/- mice and report that CALHM6 is important for the regulation of the early innate control of Listeria monocytogenes infection in vivo. We find that CALHM6 is upregulated in macrophages by pathogen-derived signals and that it relocates from the intracellular compartment to the macrophage-NK cell synapse, facilitating ATP release and controlling the kinetics of NK cell activation. Anti-inflammatory cytokines terminate CALHM6 expression. CALHM6 forms an ion channel when expressed in the plasma membrane of Xenopus oocytes, where channel opening is controlled by a conserved acidic residue, E119. In mammalian cells, CALHM6 is localised to intracellular compartments. Our results contribute to the understanding of neurotransmitter-like signal exchange between immune cells that fine-tunes the timing of innate immune responses.


Assuntos
Infecções Bacterianas , Sinapses Imunológicas , Camundongos , Animais , Canais Iônicos/metabolismo , Células Matadoras Naturais , Infecções Bacterianas/metabolismo , Trifosfato de Adenosina/metabolismo , Mamíferos
4.
Proc Natl Acad Sci U S A ; 117(29): 17156-17165, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611812

RESUMO

Semi-invariant natural killer T (iNKT) cells are self-reactive lymphocytes, yet how this lineage attains self-tolerance remains unknown. iNKT cells constitutively express high levels of Nr4a1-encoded Nur77, a transcription factor that integrates signal strength downstream of the T cell receptor (TCR) within activated thymocytes and peripheral T cells. The function of Nur77 in iNKT cells is unknown. Here we report that sustained Nur77 overexpression (Nur77tg) in mouse thymocytes abrogates iNKT cell development. Introgression of a rearranged Vα14-Jα18 TCR-α chain gene into the Nur77tg (Nur77tg;Vα14tg) mouse rescued iNKT cell development up to the early precursor stage, stage 0. iNKT cells in bone marrow chimeras that reconstituted thymic cellularity developed beyond stage 0 precursors and yielded IL-4-producing NKT2 cell subset but not IFN-γ-producing NKT1 cell subset. Nonetheless, the developing thymic iNKT cells that emerged in these chimeras expressed the exhaustion marker PD1 and responded poorly to a strong glycolipid agonist. Thus, Nur77 integrates signals emanating from the TCR to control thymic iNKT cell tolerance induction, terminal differentiation, and effector functions.


Assuntos
Diferenciação Celular , Tolerância Imunológica , Células T Matadoras Naturais , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores de Antígenos de Linfócitos T , Timócitos
5.
Crit Rev Immunol ; 41(4): 55-88, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35381143

RESUMO

It is now appreciated that a group of lymphoid lineage cells, collectively called innate-like effector lymphocytes, have evolved to integrate information relayed by the innate sensory immune system about the state of the local tissue environment and to pass on this context to downstream effector innate and adaptive immune responses. Thereby, innate functions engrained into such innate-like lymphoid lineage cells during development can control the quality and magnitude of an immune response to a tissue-altering pathogen and facilitate the formation of memory engrams within the immune system. These goals are accomplished by the innate lymphoid cells that lack antigen-specific receptors, γδ T cell receptor (TCR)-expressing T cells, and several αß TCR-expressing T cell subsets-such as natural killer T cells, mucosal-associated invariant T cells, et cetera. Whilst we briefly consider the commonalities in the origins and functions of these diverse lymphoid subsets to provide context, the primary topic of this review is to discuss how the semi-invariant natural killer T cells got this way in evolution through lineage commitment and onward ontogeny. What emerges from this discourse is the question: Has a "limbic immune system" emerged (screaming quietly in plain sight!) out of what has been dubbed "in-betweeners"?


Assuntos
Células T Matadoras Naturais , Humanos , Imunidade Inata , Células Matadoras Naturais , Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T
6.
Proteomics ; 21(23-24): e2000143, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34310018

RESUMO

T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen-binding groove of an MHC-encoded class I or class II molecule. Insight into the precise composition and biology of self and non-self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large-scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non-self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.


Assuntos
Antígenos de Histocompatibilidade Classe I , Proteômica , Antígenos de Histocompatibilidade Classe II , Ligantes , Espectrometria de Massas , Linfócitos T
7.
J Immunol ; 201(4): 1253-1266, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29997123

RESUMO

Acute respiratory virus infection (ARI) induces CD8+ T cells with diminished cytokine production and functional impairment. The role of cellular mediators of immune impairment, specifically CD4+ regulatory T cells (Tregs), is incompletely understood in ARI. Tregs are known suppressors of effector T cell function, but whether they are detrimental or beneficial in ARI remains controversial. We show in this paper that Treg depletion leads to increased CD8+ T cell function and lower virus titer in mice infected with human metapneumovirus. We further demonstrate that Tregs play a temporal role in the immune response to human metapneumovirus and influenza: Treg depletion before infection pathologically reduces virus-specific CD8+ T cell numbers and delays virus clearance, whereas depletion 2 d postinoculation enhances CD8+ T cell functionality without reducing virus-specific CD8+ T cell numbers. Mechanistically, Treg depletion during immune priming led to impaired dendritic cell and CD8+ T cell migration. Further, early Treg depletion was associated with immune skewing toward a type 2 phenotype characterized by increased type 2 innate lymphoid cells and TH2 CD4+ T cells, which was not observed when Treg depletion was delayed until after inoculation. These results indicate that the presence of Tregs at inoculation is critical for efficient priming of the CD8+ T cell response to ARI, whereas later in infection, Tregs are dispensable for virus clearance.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Paramyxoviridae/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Vírus da Influenza A Subtipo H3N2/imunologia , Masculino , Metapneumovirus/imunologia , Camundongos , Camundongos Endogâmicos C57BL
8.
J Infect Dis ; 219(11): 1786-1798, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30566602

RESUMO

BACKGROUND: Adjuvant System 03 (AS03) markedly enhances responses to influenza A/H5N1 vaccines, but the mechanisms of this enhancement are incompletely understood. METHODS: Using ribonucleic acid sequencing on peripheral blood mononuclear cells (PBMCs) from AS03-adjuvanted and unadjuvanted inactivated H5N1 vaccine recipients, we identified differentially expressed genes, enriched pathways, and genes that correlated with serologic responses. We compared bulk PBMC findings with our previously published assessments of flow-sorted immune cell types. RESULTS: AS03-adjuvanted vaccine induced the strongest differential signals on day 1 postvaccination, activating multiple innate immune pathways including interferon and JAK-STAT signaling, Fcγ receptor (FcγR)-mediated phagocytosis, and antigen processing and presentation. Changes in signal transduction and immunoglobulin genes predicted peak hemagglutinin inhibition (HAI) titers. Compared with individual immune cell types, activated PBMC genes and pathways were most similar to innate immune cells. However, several pathways were unique to PBMCs, and several pathways identified in individual cell types were absent in PBMCs. CONCLUSIONS: Transcriptomic analysis of PBMCs after AS03-adjuvanted H5N1 vaccination revealed early activation of innate immune signaling, including a 5- to 8-fold upregulation of FcγR1A/1B/1C genes. Several early gene responses were correlated with HAI titer, indicating links with the adaptive immune response. Although PBMCs and cell-specific results shared key innate immune signals, unique signals were identified by both approaches.


Assuntos
Imunidade Inata , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Esqualeno/imunologia , alfa-Tocoferol/imunologia , Imunidade Adaptativa , Adjuvantes Imunológicos/uso terapêutico , Adulto , Método Duplo-Cego , Combinação de Medicamentos , Perfilação da Expressão Gênica , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Leucócitos/imunologia , Polissorbatos , Transdução de Sinais , Adulto Jovem
9.
Trends Immunol ; 37(11): 738-754, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27623113

RESUMO

The CD1 proteins are a family of non-polymorphic and MHC class I-related molecules that present lipid antigens to subsets of T lymphocytes with innate- or adaptive-like immune functions. Recent studies have provided new insight into the identity of immunogenic CD1 antigens and the mechanisms that control the generation and loading of these antigens onto CD1 molecules. Furthermore, substantial progress has been made in identifying CD1-restricted T cells and decoding the diverse immunological functions of distinct CD1-restricted T cell subsets. These findings shed new light on the contributions of the CD1 antigen-presentation pathway to normal health and to a diverse array of pathologies, and provide a new impetus for exploiting this fascinating recognition system for the development of vaccines and immunotherapies.


Assuntos
Apresentação de Antígeno , Antígenos CD1/metabolismo , Imunoterapia/métodos , Células T Matadoras Naturais/imunologia , Subpopulações de Linfócitos T/imunologia , Vacinas/imunologia , Imunidade Adaptativa , Animais , Antígenos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunidade Inata , Lipídeos/imunologia , Ativação Linfocitária
10.
Immunity ; 33(2): 143-5, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20732635

RESUMO

The endogenous lipids that control the functions of invariant natural killer T (iNKT) cells remain enigmatic. In this issue of Immunity, Darmoise et al. (2010) report that lysosomal alpha-galactosidase A destroys self-antigens recognized by iNKT cells.

11.
Immunity ; 32(6): 743-53, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20620941

RESUMO

Many functions of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) have been defined, but relatively little is known about the biology of an alternative mTOR complex, mTORC2. We showed that conditional deletion of rictor, an essential subunit of mTORC2, impaired differentiation into T helper 1 (Th1) and Th2 cells without diversion into FoxP3(+) status or substantial effect on Th17 cell differentiation. mTORC2 promoted phosphorylation of protein kinase B (PKB, or Akt) and PKC, Akt activity, and nuclear NF-kappaB transcription factors in response to T cell activation. Complementation with active Akt restored only T-bet transcription factor expression and Th1 cell differentiation, whereas activated PKC-theta reverted only GATA3 transcription factor and the Th2 cell defect of mTORC2 mutant cells. Collectively, the data uncover vital mTOR-PKC and mTOR-Akt connections in T cell differentiation and reveal distinct pathways by which mTORC2 regulates development of Th1 and Th2 cell subsets.


Assuntos
Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/citologia , Serina-Treonina Quinases TOR/metabolismo , Células Th1/citologia , Células Th2/citologia , Animais , Diferenciação Celular/imunologia , Separação Celular , Citometria de Fluxo , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Ativação Linfocitária/imunologia , Camundongos , Proteína Quinase C/imunologia , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transfecção
12.
Immunity ; 33(2): 254-65, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20691614

RESUMO

Follicular (FO) and marginal zone (MZ) B cells are maintained in distinct locations within the spleen, but the genetic basis for this separation is still enigmatic. We now report that B cell sequestration requires lineage-specific regulation of migratory receptors by the transcription factor Klf2. Moreover, using gene-targeted mice we show that altered splenic B cell migration confers a significant in vivo gain-of-function phenotype to FO B cells, including the ability to quickly respond to MZ-associated antigens and pathogens in a T cell-dependent manner. This work demonstrates that in wild-type animals, naive FO B cells are actively removed from the MZ, thus restricting their capacity to respond to blood-borne pathogens.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Movimento Celular , Imunidade Humoral , Baço/citologia , Baço/imunologia , Animais , Antígenos CD19/genética , Antígenos CD19/imunologia , Antígenos T-Independentes/genética , Antígenos T-Independentes/imunologia , Medula Óssea/imunologia , Diferenciação Celular , Células Cultivadas , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/imunologia , Camundongos , Camundongos Knockout , Receptores CCR/imunologia
13.
J Immunol ; 209(2): 193-195, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35821100
14.
Proteomics ; 17(12)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28508465

RESUMO

Adjuvants enhance immunity elicited by vaccines through mechanisms that are poorly understood. Using a systems biology approach, we investigated temporal protein expression changes in five primary human immune cell populations: neutrophils, monocytes, natural killer cells, T cells, and B cells after administration of either an Adjuvant System 03 adjuvanted or unadjuvanted split-virus H5N1 influenza vaccine. Monocytes demonstrated the strongest differential signal between vaccine groups. On day 3 post-vaccination, several antigen presentation-related pathways, including MHC class I-mediated antigen processing and presentation, were enriched in monocytes and neutrophils and expression of HLA class I proteins was increased in the Adjuvant System 03 group. We identified several protein families whose proteomic responses predicted seroprotective antibody responses (>1:40 hemagglutination inhibition titer), including inflammation and oxidative stress proteins at day 1 as well as immunoproteasome subunit (PSME1 and PSME2) and HLA class I proteins at day 3 in monocytes. While comparison between temporal proteomic and transcriptomic results showed little overlap overall, enrichment of the MHC class I antigen processing and presentation pathway in monocytes and neutrophils was confirmed by both approaches.


Assuntos
Apresentação de Antígeno , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/uso terapêutico , Proteoma/metabolismo , Adjuvantes Imunológicos , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células Cultivadas , Humanos , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Mapas de Interação de Proteínas , Proteômica , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
PLoS Pathog ; 11(6): e1004975, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26068662

RESUMO

The respiratory mucosa is a major site for pathogen invasion and, hence, a site requiring constant immune surveillance. The type I, semi-invariant natural killer T (NKT) cells are enriched within the lung vasculature. Despite optimal positioning, the role of NKT cells in respiratory infectious diseases remains poorly understood. Hence, we assessed their function in a murine model of pulmonary tularemia--because tularemia is a sepsis-like proinflammatory disease and NKT cells are known to control the cellular and humoral responses underlying sepsis. Here we show for the first time that respiratory infection with Francisella tularensis live vaccine strain resulted in rapid accumulation of NKT cells within the lung interstitium. Activated NKT cells produced interferon-γ and promoted both local and systemic proinflammatory responses. Consistent with these results, NKT cell-deficient mice showed reduced inflammatory cytokine and chemokine response yet they survived the infection better than their wild type counterparts. Strikingly, NKT cell-deficient mice had increased lymphocytic infiltration in the lungs that organized into tertiary lymphoid structures resembling induced bronchus-associated lymphoid tissue (iBALT) at the peak of infection. Thus, NKT cell activation by F. tularensis infection hampers iBALT formation and promotes a systemic proinflammatory response, which exacerbates severe pulmonary tularemia-like disease in mice.


Assuntos
Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Mucosa Respiratória/imunologia , Tularemia/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Francisella tularensis/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal
16.
J Immunol ; 195(9): 4319-30, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26401005

RESUMO

Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Metapneumovirus/imunologia , Infecções por Paramyxoviridae/imunologia , Infecções Respiratórias/imunologia , Doença Aguda , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Metapneumovirus/fisiologia , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Paramyxoviridae/genética , Infecções por Paramyxoviridae/virologia , Fenótipo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Infecções Respiratórias/genética , Infecções Respiratórias/virologia , Baço/imunologia , Baço/metabolismo , Baço/virologia , Transcriptoma/genética , Transcriptoma/imunologia
17.
Eur J Immunol ; 45(12): 3241-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26527367

RESUMO

In 1985, John Monaco--the discoverer of LMP-2 and -7, the inducible components of the immunoproteasome--asked his advanced immunology class as to why the MHC region contained not only structural genes, but several others as well, whose functions were then unknown. As we drew a blank, he quipped: perchance because many of the MHC genes are induced by IFN-γ! The ensuing three decades have witnessed the unveiling of the profound fundamental and clinical implications of that classroom tête-à-tête. Amongst its multitudinous effects, IFN-γ induces genes enhancing antigen processing and presentation to T cells; such as those encoding cellular proteases and activators of proteases. In this issue, Keller et al. [Eur. J. Immunol. 2015. 45: 3257-3268] demonstrate that the limited success of MART-1/Melan-A-targeted immunotherapy in melanoma patients could be due to inefficient MART-1(26-35) presentation, owing to the proteolytic activities of IFN-γ-inducible ß2i/MECL-1, proteasome activator 28 (PA28), and endoplasmic reticulum-associated aminopeptidase-associated with antigen processing (ERAP). Specifically, whilst ß2i and PA28 impede MART-1(26-35) liberation from its precursor protein, ERAP-1 degrades this epitope. Hence, critical to effective cancer immunotherapy is deep knowledge of T-cell-targeted tumor antigens and how cellular proteases generate protective epitope(s) from them, or destroy them.


Assuntos
Complexo de Endopeptidases do Proteassoma/imunologia , Evasão Tumoral , Animais , Humanos , Interferon gama/farmacologia , Linfócitos do Interstício Tumoral/imunologia , Antígeno MART-1/imunologia , Melanoma/imunologia , Melanoma/terapia
18.
J Virol ; 89(17): 8713-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063431

RESUMO

UNLABELLED: Human metapneumovirus (HMPV) is a major cause of respiratory disease in infants, the elderly, and immunocompromised individuals worldwide. There is currently no licensed HMPV vaccine. Virus-like particles (VLPs) are an attractive vaccine candidate because they are noninfectious and elicit a neutralizing antibody response. However, studies show that serum neutralizing antibodies are insufficient for complete protection against reinfection and that adaptive T cell immunity is important for viral clearance. HMPV and other respiratory viruses induce lung CD8(+) T cell (TCD8) impairment, mediated by programmed death 1 (PD-1). In this study, we generated HMPV VLPs by expressing the fusion and matrix proteins in mammalian cells and tested whether VLP immunization induces functional HMPV-specific TCD8 responses in mice. C57BL/6 mice vaccinated twice with VLPs and subsequently challenged with HMPV were protected from lung viral replication for at least 20 weeks postimmunization. A single VLP dose elicited F- and M-specific lung TCD8s with higher function and lower expression of PD-1 and other inhibitory receptors than TCD8s from HMPV-infected mice. However, after HMPV challenge, lung TCD8s from VLP-vaccinated mice exhibited inhibitory receptor expression and functional impairment similar to those of mice experiencing secondary infection. HMPV challenge of VLP-immunized µMT mice also elicited a large percentage of impaired lung TCD8s, similar to mice experiencing secondary infection. Together, these results indicate that VLPs are a promising vaccine candidate but do not prevent lung TCD8 impairment upon HMPV challenge. IMPORTANCE: Human metapneumovirus (HMPV) is a leading cause of acute respiratory disease for which there is no licensed vaccine. Virus-like particles (VLPs) are an attractive vaccine candidate and induce antibodies, but T cell responses are less defined. Moreover, HMPV and other respiratory viruses induce lung CD8(+) T cell (TCD8) impairment mediated by programmed death 1 (PD-1). In this study, HMPV VLPs containing viral fusion and matrix proteins elicited epitope-specific TCD8s that were functional with low PD-1 expression. Two VLP doses conferred sterilizing immunity in C57BL/6 mice and facilitated HMPV clearance in antibody-deficient µMT mice without enhancing lung pathology. However, regardless of whether responding lung TCD8s had previously encountered HMPV antigens in the context of VLPs or virus, similar proportions were impaired and expressed comparable levels of PD-1 upon viral challenge. These results suggest that VLPs are a promising vaccine candidate but do not prevent lung TCD8 impairment upon HMPV challenge.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Pulmão/imunologia , Metapneumovirus/imunologia , Infecções por Paramyxoviridae/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células HEK293 , Humanos , Pulmão/citologia , Depleção Linfocítica , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Paramyxoviridae/prevenção & controle , Infecções por Paramyxoviridae/virologia , Receptor de Morte Celular Programada 1/imunologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/virologia , Vacinação , Proteínas Virais de Fusão/biossíntese , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia , Proteínas da Matriz Viral/biossíntese , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Replicação Viral/imunologia
19.
J Virol ; 89(8): 4405-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653440

RESUMO

UNLABELLED: Type I IFN signaling, which is initiated through activation of the alpha interferon receptor (IFNAR), regulates the expression of proteins that are crucial contributors to immune responses. Paramyxoviruses, including human metapneumovirus (HMPV), have evolved mechanisms to inhibit IFNAR signaling, but the specific contribution of IFNAR signaling to the control of HMPV replication, pathogenesis, and adaptive immunity is unknown. We used IFNAR-deficient (IFNAR(-/-)) mice to assess the effect of IFNAR signaling on HMPV replication and the CD8(+) T cell response. HMPV-infected IFNAR(-/-) mice had a higher peak of early viral replication but cleared the virus with kinetics similar to those of wild-type (WT) mice. However, IFNAR(-/-) mice infected with HMPV displayed less airway dysfunction and lung inflammation. CD8(+) T cells of IFNAR(-/-) mice after HMPV infection expressed levels of the inhibitory receptor programmed death 1 (PD-1) similar to those of WT mice. However, despite lower expression of inhibitory programmed death ligand 1 (PD-L1), HMPV-specific CD8(+) T cells of IFNAR(-/-) mice were more functionally impaired than those of WT mice and upregulated the inhibitory receptor Tim-3. Analysis of the antigen-presenting cell subsets in the lungs revealed that the expansion of PD-L1(low) dendritic cells (DCs), but not PD-L1(high) alveolar macrophages, was dependent on IFNAR signaling. Collectively, our results indicate a role for IFNAR signaling in the early control of HMPV replication, disease progression, and the development of an optimal adaptive immune response. Moreover, our findings suggest an IFNAR-independent mechanism of lung CD8(+) T cell impairment. IMPORTANCE: Human metapneumovirus (HMPV) is a leading cause of acute respiratory illness. CD8(+) T cells are critical for clearing viral infection, yet recent evidence shows that HMPV and other respiratory viruses induce CD8(+) T cell impairment via PD-1-PD-L1 signaling. We sought to understand the role of type I interferon (IFN) in the innate and adaptive immune responses to HMPV by using a mouse model lacking IFN signaling. Although HMPV titers were higher in the absence of type I IFN, virus was nonetheless cleared and mice were less ill, indicating that type I IFN is not required to resolve HMPV infection but contributes to pathogenesis. Further, despite lower levels of the inhibitory ligand PD-L1 in mice lacking type I IFN, CD8(+) T cells were more impaired in these mice than in WT mice. Our data suggest that specific antigen-presenting cell subsets and the inhibitory receptor Tim-3 may contribute to CD8(+) T cell impairment.


Assuntos
Regulação da Expressão Gênica/imunologia , Interferon Tipo I/metabolismo , Metapneumovirus/imunologia , Infecções por Paramyxoviridae/imunologia , Transdução de Sinais/imunologia , Replicação Viral/fisiologia , Análise de Variância , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citometria de Fluxo , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Interferon Tipo I/genética , Metapneumovirus/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oximetria , Infecções por Paramyxoviridae/patologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Virais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Virol ; 88(18): 10963-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24965465

RESUMO

Human metapneumovirus (HMPV) is a major cause of respiratory disease. The role of NK cells in protection against HMPV is unclear. We show that while HMPV-infected C57BL/6 mice had higher numbers of functional lung NK cells than mock-treated mice, comparing NK cell-depleted and control mice did not reveal differences in lung viral titers, histopathology, cytokine levels, or T cell numbers or function. These data indicate that NK cells are not required for host control of HMPV.


Assuntos
Células Matadoras Naturais/imunologia , Metapneumovirus/fisiologia , Infecções por Paramyxoviridae/imunologia , Animais , Citocinas/imunologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Metapneumovirus/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Paramyxoviridae/virologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA