Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Phylogenet Evol ; 197: 108083, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38679303

RESUMO

Kinosternon is the most speciose genus of extant turtles, with 22 currently recognized species, distributed across large parts of the Americas. Most species have small distributions, but K. leucostomum and K. scorpioides range from Mexico to South America. Previous studies have found discordance between mitochondrial and nuclear phylogenies in some kinosternid groups, with the current taxonomy following the nuclear-based results. Herein, based on extended molecular, geographic, and taxonomic sampling, we explore the phylogeographic structure and taxonomic limits for K. leucostomum and the K. scorpioides group and present a fossil-calibrated nuclear time tree for Kinosternon. Our results reveal contrasting differentiation patterns for the K. scorpioides group and K. leucostomum, despite overlapping distributions. Kinosternon leucostomum shows only shallow geographic divergence, whereas the K. scorpioides group is polyphyletic with up to 10 distinct taxa, some of them undescribed. We support the elevation of K. s. albogulare and K. s. cruentatum to species level. Given the deep divergence within the genus Kinosternon, we propose the recognition of three subgenera, Kinosternon, Cryptochelys and Thyrosternum, and the abandonment of the group-based classification, at least for the K. leucostomum and K. scorpioides groups. Our results show an initial split in Kinosternon that gave rise to two main radiations, one Nearctic and one mainly Neotropical. Most speciation events in Kinosternon occurred during the Quaternary and we hypothesize that they were mediated by both climatic and geological events. Additionally, our data imply that at least three South American colonizations occurred, two in the K. leucostomum group, and one in the K. scorpioides group. Additionally, we hypothesize that discordance between mitochondrial and nuclear phylogenetic signal is due to mitochondrial capture from an extinct kinosternine lineage.


Assuntos
Filogenia , Filogeografia , Tartarugas , Animais , Tartarugas/classificação , Tartarugas/genética , América do Sul , Núcleo Celular/genética , DNA Mitocondrial/genética , Análise de Sequência de DNA , Tipagem de Sequências Multilocus , Variação Genética , Teorema de Bayes
2.
J Anat ; 235(6): 1078-1097, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31373396

RESUMO

The middle ear of turtles differs from other reptiles in being separated into two distinct compartments. Several ideas have been proposed as to why the middle ear is compartmentalized in turtles, most suggesting a relationship with underwater hearing. Extant turtle species span fully marine to strictly terrestrial habitats, and ecomorphological hypotheses of turtle hearing predict that this should correlate with variation in the structure of the middle ear due to differences in the fluid properties of water and air. We investigate the shape and size of the air-filled middle ear cavity of 56 extant turtles using 3D data and phylogenetic comparative analysis to test for correlations between habitat preferences and the shape and size of the middle ear cavity. Only weak correlations are found between middle ear cavity size and ecology, with aquatic taxa having proportionally smaller cavity volumes. The middle ear cavity of turtles exhibits high shape diversity among species, but we found no relationship between this shape variation and ecology. Surprisingly, the estimated acoustic transformer ratio, a key functional parameter of impedance-matching ears in vertebrates, also shows no relation to habitat preferences (aquatic/terrestrial) in turtles. We suggest that middle ear cavity shape may be controlled by factors unrelated to hearing, such as the spatial demands of surrounding cranial structures. A review of the fossil record suggests that the modern turtle ear evolved during the Early to Middle Jurassic in stem turtles broadly adapted to freshwater and terrestrial settings. This, combined with our finding that evolutionary transitions between habitats caused only weak evolutionary changes in middle ear structure, suggests that tympanic hearing in turtles evolved as a compromise between subaerial and underwater hearing.


Assuntos
Orelha Média/anatomia & histologia , Ecossistema , Tartarugas/anatomia & histologia , Animais , Evolução Biológica , Crânio/anatomia & histologia
3.
BMC Evol Biol ; 16(1): 236, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27793089

RESUMO

BACKGROUND: Turtles (Testudinata) are a successful lineage of vertebrates with about 350 extant species that inhabit all major oceans and landmasses with tropical to temperate climates. The rich fossil record of turtles documents the adaptation of various sub-lineages to a broad range of habitat preferences, but a synthetic biogeographic model is still lacking for the group. RESULTS: We herein describe a new species of fossil turtle from the Late Jurassic of Xinjiang, China, Sichuanchelys palatodentata sp. nov., that is highly unusual by plesiomorphically exhibiting palatal teeth. Phylogenetic analysis places the Late Jurassic Sichuanchelys palatodentata in a clade with the Late Cretaceous Mongolochelys efremovi outside crown group Testudines thereby establishing the prolonged presence of a previously unrecognized clade of turtles in Asia, herein named Sichuanchelyidae. In contrast to previous hypotheses, M. efremovi and Kallokibotion bajazidi are not found within Meiolaniformes, a clade that is here reinterpreted as being restricted to Gondwana. CONCLUSIONS: A revision of the global distribution of fossil and recent turtle reveals that the three primary lineages of derived, aquatic turtles, including the crown, Paracryptodira, Pan-Pleurodira, and Pan-Cryptodira can be traced back to the Middle Jurassic of Euramerica, Gondwana, and Asia, respectively, which resulted from the primary break up of Pangaea at that time. The two primary lineages of Pleurodira, Pan-Pelomedusoides and Pan-Chelidae, can similarly be traced back to the Cretaceous of northern and southern Gondwana, respectively, which were separated from one another by a large desert zone during that time. The primary divergence of crown turtles was therefore driven by vicariance to the primary freshwater aquatic habitat of these lineages. The temporally persistent lineages of basal turtles, Helochelydridae, Meiolaniformes, Sichuanchelyidae, can similarly be traced back to the Late Mesozoic of Euramerica, southern Gondwana, and Asia. Given the ambiguous phylogenetic relationships of these three lineages, it is unclear if their diversification was driven by vicariance as well, or if they display a vicariance-like pattern. The clean, primary signal apparent among early turtles is secondarily obliterated throughout the Late Cretaceous to Recent by extensive dispersal of continental turtles and by multiple invasions of marine habitats.


Assuntos
Fósseis , Internacionalidade , Filogeografia , Tartarugas/classificação , Exoesqueleto/anatomia & histologia , Animais , China , Paleontologia , Filogenia , Crânio/anatomia & histologia , Fatores de Tempo , Dente
4.
Proc Biol Sci ; 283(1843)2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903875

RESUMO

Turtles (Testudinata) are a diverse group of amniotes that have a rich fossil record that extends back to the Late Triassic, but little is known about global patterns of disparity through time. We here investigate the cranial disparity of 172 representatives of the turtle lineage and their ancestors grouped into 20 time bins ranging from the Late Triassic until the Recent using two-dimensional geometric morphometrics. Three evolutionary phases are apparent in all three anatomical views investigated. In the first phase, disparity increases gradually from the Late Triassic to the Palaeogene with only a minor perturbation at the K/T extinct event. Although global warming may have influenced this increase, we find the Mesozoic fragmentation of Pangaea to be a more plausible factor. Following its maximum, disparity decreases strongly towards the Miocene, only to recover partially towards the Recent. The marked collapse in disparity is likely a result of habitat destruction caused by global drying, combined with the homogenization of global turtle faunas that resulted from increased transcontinental dispersal in the Tertiary. The disparity minimum in the Miocene is likely an artefact of poor sampling.


Assuntos
Evolução Biológica , Crânio/anatomia & histologia , Tartarugas/anatomia & histologia , Animais , Fósseis , Filogenia
5.
Syst Biol ; 64(2): 187-204, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25305281

RESUMO

The unique ability of modern turtles to retract their head and neck into the shell through a side-necked (pleurodiran) or hidden-necked (cryptodiran) motion is thought to have evolved independently in crown turtles. The anatomical changes that led to the vertebral shapes of modern turtles, however, are still poorly understood. Here we present comprehensive geometric morphometric analyses that trace turtle vertebral evolution and reconstruct disparity across phylogeny. Disparity of vertebral shape was high at the dawn of turtle evolution and decreased after the modern groups evolved, reflecting a stabilization of morphotypes that correspond to the two retraction modes. Stem turtles, which had a very simple mode of retraction, the lateral head tuck, show increasing flexibility of the neck through evolution towards a pleurodiran-like morphotype. The latter was the precondition for evolving pleurodiran and cryptodiran vertebrae. There is no correlation between the construction of formed articulations in the cervical centra and neck mobility. An increasing mobility between vertebrae, associated with changes in vertebral shape, resulted in a more advanced ability to retract the neck. In this regard, we hypothesize that the lateral tucking retraction of stem turtles was not only the precondition for pleurodiran but also of cryptodiran retraction. For the former, a kink in the middle third of the neck needed to be acquired, whereas for the latter modification was necessary between the eighth cervical vertebra and first thoracic vertebra. Our paper highlights the utility of 3D shape data, analyzed in a phylogenetic framework, to examine the magnitude and mode of evolutionary modifications to vertebral morphology. By reconstructing and visualizing ancestral anatomical shapes, we provide insight into the anatomical features underlying neck retraction mode, which is a salient component of extant turtle classification.


Assuntos
Evolução Biológica , Vértebras Cervicais/anatomia & histologia , Pescoço/anatomia & histologia , Tartarugas/anatomia & histologia , Tartarugas/classificação , Animais , Filogenia
6.
Syst Biol ; 64(5): 853-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25922515

RESUMO

Fossils provide the principal basis for temporal calibrations, which are critical to the accuracy of divergence dating analyses. Translating fossil data into minimum and maximum bounds for calibrations is the most important-often least appreciated-step of divergence dating. Properly justified calibrations require the synthesis of phylogenetic, paleontological, and geological evidence and can be difficult for nonspecialists to formulate. The dynamic nature of the fossil record (e.g., new discoveries, taxonomic revisions, updates of global or local stratigraphy) requires that calibration data be updated continually lest they become obsolete. Here, we announce the Fossil Calibration Database (http://fossilcalibrations.org), a new open-access resource providing vetted fossil calibrations to the scientific community. Calibrations accessioned into this database are based on individual fossil specimens and follow best practices for phylogenetic justification and geochronological constraint. The associated Fossil Calibration Series, a calibration-themed publication series at Palaeontologia Electronica, will serve as a key pipeline for peer-reviewed calibrations to enter the database.


Assuntos
Bases de Dados Factuais/normas , Fósseis , Filogenia , Acesso à Informação , Calibragem , Interpretação Estatística de Dados , Internet , Tempo
7.
Proc Biol Sci ; 282(1798): 20141013, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25429012

RESUMO

Calibration is the rate-determining step in every molecular clock analysis and, hence, considerable effort has been expended in the development of approaches to distinguish good from bad calibrations. These can be categorized into a priori evaluation of the intrinsic fossil evidence, and a posteriori evaluation of congruence through cross-validation. We contrasted these competing approaches and explored the impact of different interpretations of the fossil evidence upon Bayesian divergence time estimation. The results demonstrate that a posteriori approaches can lead to the selection of erroneous calibrations. Bayesian posterior estimates are also shown to be extremely sensitive to the probabilistic interpretation of temporal constraints. Furthermore, the effective time priors implemented within an analysis differ for individual calibrations when employed alone and in differing combination with others. This compromises the implicit assumption of all calibration consistency methods, that the impact of an individual calibration is the same when used alone or in unison with others. Thus, the most effective means of establishing the quality of fossil-based calibrations is through a priori evaluation of the intrinsic palaeontological, stratigraphic, geochronological and phylogenetic data. However, effort expended in establishing calibrations will not be rewarded unless they are implemented faithfully in divergence time analyses.


Assuntos
Calibragem , Evolução Molecular , Filogenia , Tartarugas/genética , Animais , Teorema de Bayes , Especiação Genética , Tartarugas/classificação , Incerteza
8.
J Exp Zool B Mol Dev Evol ; 324(3): 181-93, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712176

RESUMO

The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles.


Assuntos
Evolução Biológica , Tartarugas/anatomia & histologia , Exoesqueleto/anatomia & histologia , Animais , Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Evolução Molecular , Fósseis , Paleontologia , Filogenia
9.
J Exp Zool B Mol Dev Evol ; 324(3): 230-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24497449

RESUMO

Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the central articulations, which raises cautions about reconstructing the mobility of fossil vertebrates. A 3D-model of the Late Triassic turtle Proganochelys quenstedti reveals that this early stem turtle was able to retract its head by tucking it sideways below the shell. The simple ventrolateral bend seen in this stem turtle, however, contrasts with the complex double-bend of extant turtles. The initial evolution of neck retraction therefore occurred in a near-synchrony with the origin of the turtle shell as a place to hide the unprotected neck. In this early, simplified retraction mode, the conical osteoderms on the neck provided further protection.


Assuntos
Vértebras Cervicais/anatomia & histologia , Pescoço/anatomia & histologia , Tartarugas/anatomia & histologia , Animais , Evolução Biológica , Vértebras Cervicais/fisiologia , Fósseis , Modelos Anatômicos , Pescoço/fisiologia , Filogenia , Tartarugas/fisiologia
10.
BMC Evol Biol ; 14: 77, 2014 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-24707892

RESUMO

BACKGROUND: Manchurochelys manchoukuoensis is an emblematic turtle from the Cretaceous Yixian Formation of Liaoning, China, a geological rock unit that is famous for yielding perfectly preserved skeletons of fossil vertebrates, including that of feathered dinosaurs. Manchurochelys manchoukuoensis was one of the first vertebrates described from this fauna, also known as the Jehol Biota. The holotype was lost during World War II and only one additional specimen has been described since. Manchurochelys manchoukuoensis is a critical taxon for unraveling the phylogenetic relationships of Cretaceous pancryptodires from Asia, a group that is considered to be of key importance for the origin of crown-group hidden-neck turtles (Cryptodira). RESULTS: A new specimen of Manchurochelys manchoukuoensis is described here from the Jiufotang Formation of Qilinshan, Chifeng, Inner Mongolia, China. This is the third specimen described and expands the range of this taxon from the Yixian Formation of the Fuxin-Yixian Basin in Liaoning to the Jiufotang Formation of the Chifeng-Yuanbaoshan Basin. A possible temporal extension of the range is less certain. The new finding adds to our understanding of the morphology of this taxon and invites a thorough revision of the phylogeny of Macrobaenidae, Sinemydidae, and closely allied forms. CONCLUSIONS: Our comprehensive phylogenetic analyses of Cretaceous Asian pancryptodires yielded two main competing hypotheses: in the first these taxa form a paraphyletic grade, whereas in the second they form a monophyletic clade. The inclusion of problematic tree changing taxa, such as Panpleurodires (stem + crown side-neck turtles) has a major influence on the phylogenetic relationships of Sinemydidae and closely allied forms. Manchurochelys manchoukuoensis nests within Sinemydidae together with Sinemys spp. and Dracochelys bicuspis in the majority of our analyses.


Assuntos
Fósseis , Filogenia , Tartarugas/anatomia & histologia , Tartarugas/classificação , Exoesqueleto , Animais , Osso e Ossos/anatomia & histologia , China
11.
Anat Rec (Hoboken) ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421128

RESUMO

The osteology, neuroanatomy, and musculature are known for most primary clades of turtles (i.e., "families"), but knowledge is still lacking for one particular clade, the Carettochelyidae. Carettochelyids are represented by only one living taxon, the pig-nosed turtle Carettochelys insculpta. Here, we use micro-computed tomography of osteological and contrast-enhanced stained specimens to describe the cranial osteology, neuroanatomy, circulatory system, and jaw musculature of Carettochelys insculpta. The jaw-related myology is described in detail for the first time for this taxon, including m. zygomaticomandibularis, a muscular unit only found in trionychians. We also document a unique arterial pattern for the internal carotid artery and its subordinate branches and provide an extensive list of osteological ontogenetic differences. The present work provides new insights into the craniomandibular anatomy of turtles and will allow a better understanding of the evolutionary history of the circulatory system of trionychians and intraspecific variation among turtles.

12.
Swiss J Palaeontol ; 143(1): 22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799181

RESUMO

Hutchemys rememdium is a poorly understood softshell turtle (Trionychidae) from the mid Paleocene of the Williston Basin of North America previously known only from postcranial remains. A particularly rich collection of previously undescribed material from the Tiffanian 4 North American Land Mammal Age (NALMA) of North Dakota is here presented consisting of numerous shells that document new variation, some non-shell postcrania, and cranial remains, which are described based on 3D models extracted from micro-CT data. Although the observed shell variation weakens previously noted differences with the younger species Hutchemys arctochelys from the Clarkforkian NALMA, the two taxa are still recognized as distinct. Parsimony and Bayesian phylogenetic analyses reaffirm the previously challenged placement of Hutchemys rememdium within the clade Plastomenidae, mostly based on novel observations of cranial characters made possible by the new material and the micro-CT data. The new topology supports the notion that the well-ossified plastron of plastomenids originated twice in parallel near the Cretaceous/Paleogene boundary, once in the Hutchemys lineage and once in the Gilmoremys/Plastomenus lineage. Hutchemys rememdium is notable for being the only documented species of trionychid in the mid Paleocene of the Williston Basin. The presence of multiple individuals in a carbonaceous claystone indicates this taxon lived in swamps and lakes and its expanded triturating surface suggests it had a durophagous diet. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-024-00315-8.

13.
BMC Evol Biol ; 13: 266, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24314094

RESUMO

BACKGROUND: Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. RESULTS: The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. CONCLUSIONS: The primary homology of the character "sutured pelvis" is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic.


Assuntos
Evolução Biológica , Tartarugas/anatomia & histologia , Tartarugas/genética , Animais , Fósseis , Alemanha , Pelve/anatomia & histologia , Filogenia , Escápula/anatomia & histologia , Coluna Vertebral
14.
BMC Evol Biol ; 13: 203, 2013 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24053145

RESUMO

BACKGROUND: Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. RESULTS: Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. CONCLUSIONS: The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls.


Assuntos
Evolução Biológica , Tartarugas/anatomia & histologia , Tartarugas/genética , Animais , China , Filogenia , Esqueleto , Tartarugas/classificação , Tartarugas/fisiologia
15.
Evol Dev ; 15(5): 317-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24074278

RESUMO

The turtle shell represents a unique modification of the ancestral tetrapod body plan. The homologies of its approximately 50 bones have been the subject of debate for more than 200 years. Although most of those homologies are now firmly established, the evolutionary origin of the dorsal median nuchal bone of the carapace remains unresolved. We propose a novel hypothesis in which the nuchal is derived from the paired, laterally positioned cleithra-dorsal elements of the ancestral tetrapod pectoral girdle that are otherwise retained among extant tetrapods only in frogs. This hypothesis is supported by origin of the nuchal as paired, mesenchymal condensations likely derived from the neural crest followed by a unique two-stage pattern of ossification. Further support is drawn from the establishment of the nuchal as part of a highly conserved "muscle scaffold" wherein the cleithrum (and its evolutionary derivatives) serves as the origin of the Musculus trapezius. Identification of the nuchal as fused cleithra is congruent with its general spatial relationships to other elements of the shoulder girdle in the adult morphology of extant turtles, and it is further supported by patterns of connectivity and transformations documented by critical fossils from the turtle stem group. The cleithral derivation of the nuchal implies an anatomical reorganization of the pectoral girdle in which the dermal portion of the girdle was transformed from a continuous lateral-ventral arc into separate dorsal and ventral components. This transformation involved the reduction and eventual loss of the scapular rami of the clavicles along with the dorsal and superficial migration of the cleithra, which then fused with one another and became incorporated into the carapace.


Assuntos
Exoesqueleto/anatomia & histologia , Osso e Ossos/anatomia & histologia , Tartarugas/anatomia & histologia , Animais , Evolução Biológica , Embrião não Mamífero/anatomia & histologia , Fósseis , Filogenia , Tartarugas/genética
16.
J Anat ; 223(5): 421-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24102560

RESUMO

The hooked element in the pes of turtles was historically identified by most palaeontologists and embryologists as a modified fifth metatarsal, and often used as evidence to unite turtles with other reptiles with a hooked element. Some recent embryological studies, however, revealed that this element might represent an enlarged fifth distal tarsal. We herein provide extensive new myological and developmental observations on the hooked element of turtles, and re-evaluate its primary and secondary homology using all available lines of evidence. Digital count and timing of development are uninformative. However, extensive myological, embryological and topological data are consistent with the hypothesis that the hooked element of turtles represents a fusion of the fifth distal tarsal with the fifth metatarsal, but that the fifth distal tarsal dominates the hooked element in pleurodiran turtles, whereas the fifth metatarsal dominates the hooked element of cryptodiran turtles. The term 'ansulate bone' is proposed to refer to hooked elements that result from the fusion of these two bones. The available phylogenetic and fossil data are currently insufficient to clarify the secondary homology of hooked elements within Reptilia.


Assuntos
Ossos do Pé/anatomia & histologia , Tartarugas/anatomia & histologia , Animais , Músculo Esquelético/anatomia & histologia , Filogenia , Tartarugas/embriologia
17.
Anat Rec (Hoboken) ; 306(6): 1465-1480, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35665466

RESUMO

Snapping turtles (Pan-Chelydridae) play an important role in modern ecosystems throughout North America, but their fossil record is notably poor. We here describe a new species of fossil pan-chelydrid, Chelydropsis aubasi, from the Middle Eocene (MP15, Bartonian) of Chéry-Chartreuve, Department of Aisne, France, based on a series of fragments that document most of the shell. The new species not only bridges the morphological gap between earlier pan-chelydrids from North America and later pan-chelydrids from Europe but also advances the arrival of the group from North America to Europe by at least 10 million years. Although pan-chelydrids are notably absent from Early and Middle Eocene localities throughout Europe, the new fossil gives credence to the idea that pan-chelydrids may have dispersed from North America to Europe in concert with other turtles during the Paleocene-Eocene Thermal Maximum, but remain undetected to date.


Assuntos
Ecossistema , Fósseis , Animais , Filogenia , França , Répteis
18.
Swiss J Palaeontol ; 142(1): 1, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36941994

RESUMO

Trionychid (softshell) turtles have a peculiar bauplan, which includes shell reductions and cranial elongation. Despite a rich fossil record dating back to the Early Cretaceous, the evolutionary origin of the trionychid bauplan is poorly understood, as even old fossils show great anatomical similarities to extant species. Documenting structural detail of fossil trionychids may help resolve the evolutionary history of the group. Here, we study the cranial and mandibular anatomy of Plastomenus thomasii using µCT scanning. Plastomenus thomasii belongs to the Plastomenidae, a long-lived (Santonian-Eocene) clade with uncertain affinities among trionychid subclades. The skulls of known plastomenids are characterized by unusual features otherwise not known among trionychids, such as extremely elongated, spatulate mandibular symphyses. We use anatomical observations for updated phylogenetic analyses using both parsimony and Bayesian methods. There is strong support across methods for stem-cyclanorbine affinities for plastomenids. The inclusion of stratigraphic data in our Bayesian analysis indicates that a range of Cretaceous Asian fossils including Perochelys lamadongensis may be stem-trionychids, suggesting that many features of trionychid anatomy evolved prior to the appearance of the crown group. Divergence time estimates from Bayesian tip-dating for the origin of crown Trionychia (134.0 Ma) and Pan-Trionychidae (123.8 Ma) constrain the evolutionary time span during which the trionychid bauplan has evolved to a range of < 11 million years. Bayesian rate estimation implies high morphological rates during early softshell turtle evolution. If correct, plastomenids partially fill the stratigraphic gap which results from shallow divergence times of crown cyclanorbines during the late Eocene. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-023-00267-5.

19.
Biol Lett ; 8(6): 1028-31, 2012 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22809725

RESUMO

The turtle shell and the relationship of the shoulder girdle inside or 'deep' to the ribcage have puzzled neontologists and developmental biologists for more than a century. Recent developmental and fossil data indicate that the shoulder girdle indeed lies inside the shell, but anterior to the ribcage. Developmental biologists compare this orientation to that found in the model organisms mice and chickens, whose scapula lies laterally on top of the ribcage. We analyse the topological relationship of the shoulder girdle relative to the ribcage within a broader phylogenetic context and determine that the condition found in turtles is also found in amphibians, monotreme mammals and lepidosaurs. A vertical scapula anterior to the thoracic ribcage is therefore inferred to be the basal amniote condition and indicates that the condition found in therian mammals and archosaurs (which includes both developmental model organisms: chickens and mice) is derived and not appropriate for studying the developmental origin of the turtle shell. Instead, among amniotes, either monotreme mammals or lepidosaurs should be used.


Assuntos
Evolução Biológica , Fósseis , Costelas/anatomia & histologia , Escápula/anatomia & histologia , Ombro/anatomia & histologia , Tartarugas/anatomia & histologia , Animais , Filogenia , Especificidade da Espécie , Vertebrados/anatomia & histologia
20.
Biol Lett ; 8(5): 846-8, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22718955

RESUMO

The behaviour of fossil organisms can typically be inferred only indirectly, but rare fossil finds can provide surprising insights. Here, we report from the Eocene Messel Pit Fossil Site between Darmstadt and Frankfurt, Germany numerous pairs of the fossil carettochelyid turtle Allaeochelys crassesculpta that represent for the first time among fossil vertebrates couples that perished during copulation. Females of this taxon can be distinguished from males by their relatively shorter tails and development of plastral kinesis. The preservation of mating pairs has important taphonomic implications for the Messel Pit Fossil Site, as it is unlikely that the turtles would mate in poisonous surface waters. Instead, the turtles initiated copulation in habitable surface waters, but perished when their skin absorbed poisons while sinking into toxic layers. The mating pairs from Messel are therefore more consistent with a stratified, volcanic maar lake with inhabitable surface waters and a deadly abyss.


Assuntos
Copulação , Fósseis , Paleontologia/métodos , Tartarugas/fisiologia , Vertebrados/fisiologia , Animais , Feminino , Alemanha , Masculino , Caracteres Sexuais , Comportamento Sexual Animal , Poluentes da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA