Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(4): 899-904, 2015 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-26197571

RESUMO

Aiming to discuss the change characteristic of macromolecular structures of high rank coal in different rheological conditions, the high rank undeformed coal from southern Qinshui basin and the coal after variable temperature and variable pressure rheology experiments were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The result shows that the texture and composition of different types of rheological coals under different temperature and pressure exhibit significant differences. Experiments of variable temperature and pressure of high rank coal (temperature: 300-400 °C, confining pressure: 50-100 MPa, strain: less than 10% and strain rate: 10(-4)-10(-7) · s(-1) will distort their macromolecular structures and recombine the chemistry structures. When the temperature is 300 °C or 350 °C, the high rank coal generates brittle or brittle-ductile rheology easily, mechanical energy transforms to heat energy, some branches and functional groups with weaker bond energy break and fall off, which split as dissociative micromolecule, with stress degradation as principal role, and stress polycondensation occurs with aromatic, texture increasing. When the temperature is up to 400 °C, ductile rheology of the high rank coal occurs with the secondary defects increasing, mechanical energy transforms to strain energy which helps the early shedding small molecules be embedded or adsorbed in the defect or on the surface of macromolecular preferentially and change the aliphatic and aromatic structures. It is affected by stress degradation and polycondensation progress, and the latter is dominated. The confining pressure and water injection of coal do not have much effect on the macromolecular structure obviously.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(3): 603-8, 2015 Mar.
Artigo em Zh | MEDLINE | ID: mdl-26117863

RESUMO

Hydrocarbon generation and structural evolution would be occurred in the process of from coal-forming material (i. e. peat sample) transforming to the coal. While Fourier Transform Infrared Spectroscopy (FTIR) have a special advantages in analyzing molecular structure of samples. For understanding the characteristics of hydrocarbon generation and structural evolution of coal-forming material during the process of pyrolysis and microbial degradation, based on the physical simulation experiments of closed pyrolysis and anaerobic microbial degradation, the generation potential of thermogenic gas and biogenic gas were studied in this paper, and characteristics of molecular structure evolution and its mechanism was analyzed by FTIR technology. Results show that cumulative gas yields of hydrocarbon gases (mainly for methane) increased with experiment temperature. The gas yield of non-hydrocarbon gas (mainly for CO2) exhibited two peaks at 250 and 375 degrees C. The degradation ability of anaerobe on coal samples weakened with the maturity increasing and there was no gas generation on the pyrolysis samples with maturity from 1.6% to 1.8%. After pyrolysis, the content of hydroxyl in peat sample decreased first and then increased with the pyrolysis temperature increasing. The content of aldehyde carbonyl, methylene and phosphate reduced. The content of aromatic esters decreased with nonlinear. The bone of S-O in stretching vibration appeared after 350 degrees C and its content increased with temperature. This shows that the sulfocompound restrains the activity of methanogenic bacteria. After degradation by anaerobe, the relative content of hydroxyl, aldehyde carbonyl, aromatic esters, methylene and phosphate in peat sample dropped significantly. It is shown that the intermolecular force between these groups weakened.


Assuntos
Hidrocarbonetos/análise , Microbiologia do Solo , Solo/química , Carvão Mineral , Gases , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
3.
Microb Ecol ; 68(2): 360-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24718907

RESUMO

Permafrost wetlands are important methane emission sources and fragile ecosystems sensitive to climate change. Presently, there remains a lack of knowledge regarding bacterial communities, especially methanotrophs in vast areas of permafrost on the Tibetan Plateau in Northwest China and the Sanjiang Plain (SJ) in Northeast China. In this study, 16S rRNA-based quantitative PCR (qPCR) and 454 pyrosequencing were used to identify bacterial communities in soils sampled from a littoral wetland of Lake Namco on the Tibetan Plateau (NMC) and an alluvial wetland on the SJ. Additionally, methanotroph-specific primers targeting particulate methane monooxygenase subunit A gene (pmoA) were used for qPCR and pyrosequencing analysis of methanotrophic community structure in NMC soils. qPCR analysis revealed the presence of 10(10) 16S rRNA gene copies per gram of wet soil in both wetlands, with 10(8) pmoA copies per gram of wet soil in NMC. The two permafrost wetlands showed similar bacterial community compositions, which differed from those reported in other cold environments. Proteobacteria, Actinobacteria , and Chloroflexi were the most abundant phyla in both wetlands, whereas Acidobacteria was prevalent in the acidic wetland SJ only. These four phyla constituted more than 80 % of total bacterial community diversity in permafrost wetland soils, and Methylobacter of type I methanotrophs was overwhelmingly dominant in NMC soils. This study is the first major bacterial sequencing effort of permafrost in the NMC and SJ wetlands, which provides fundamental data for further studies of microbial function in extreme ecosystems under climate change scenarios.


Assuntos
Bactérias/classificação , Pergelissolo , Microbiologia do Solo , Áreas Alagadas , Bactérias/genética , China , DNA Bacteriano/genética , Genes Bacterianos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química
4.
ScientificWorldJournal ; 2014: 560450, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25126601

RESUMO

The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m(2)/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal.


Assuntos
Carvão Mineral/análise , Fenômenos Geológicos , Nanoporos/ultraestrutura , Adsorção , China , Microscopia Eletrônica de Varredura , Nitrogênio/química , Porosidade
5.
Water Sci Technol ; 70(4): 620-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25116490

RESUMO

This study evaluated the performance of soil and coal cinder used as substrate in vertical-flow constructed wetlands for removal of fluoride and arsenic. Two duplicate pilot-scale artificial wetlands were set up, planted respectively with cannas, calamus and no plant as blank, fed with a synthetic sewage solution. Laboratory (batch) incubation experiments were also carried out separately to ascertain the fluoride and arsenic adsorption capacity of the two materials (i.e. soil and coal cinder). The results showed that both soil and coal cinder had quite high fluoride and arsenic adsorption capacity. The wetlands were operated for two months. The concentrations of fluoride and arsenic in the effluent of the blank wetlands were obviously higher than in the other wetlands planted with cannas and calamus. Fluoride and arsenic accumulation in the wetlands body at the end of the operation period was in range of 14.07-37.24% and 32.43-90.04%, respectively, as compared with the unused media.


Assuntos
Arsênio/química , Carvão Mineral , Fluoretos/química , Solo/química , Poluentes Químicos da Água/química , Áreas Alagadas , Adsorção , Calamus , Purificação da Água/métodos , Zingiberales
6.
Plant Methods ; 20(1): 132, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39187896

RESUMO

BACKGROUND: The use of 3D imaging techniques, such as X-ray CT, in root phenotyping has become more widespread in recent years. However, due to the complexity of the root structure, analyzing the resulting 3D volumes to obtain detailed architectural root traits remains a challenging computational problem. When it comes to image-based phenotyping of excavated maize root crowns, two types of root features that are notably missing from existing methods are the whorls and soil line. Whorls refer to the distinct areas located at the base of each stem node from which roots sprout in a circular pattern (Liu S, Barrow CS, Hanlon M, Lynch JP, Bucksch A. Dirt/3D: 3D root phenotyping for field-grown maize (zea mays). Plant Physiol. 2021;187(2):739-57. https://doi.org/10.1093/plphys/kiab311 .). The soil line is where the root stem meets the ground. Knowledge of these features would give biologists deeper insights into the root system architecture (RSA) and the below- and above-ground root properties. RESULTS: We developed TopoRoot+, a computational pipeline that produces architectural traits from 3D X-ray CT volumes of excavated maize root crowns. Building upon the TopoRoot software (Zeng D, Li M, Jiang N, Ju Y, Schreiber H, Chambers E, et al. Toporoot: A method for computing hierarchy and fine-grained traits of maize roots from 3D imaging. Plant Methods. 2021;17(1). https://doi.org/10.1186/s13007-021-00829-z .) for computing fine-grained root traits, TopoRoot + adds the capability to detect whorls, identify nodal roots at each whorl, and compute the soil line location. The new algorithms in TopoRoot + offer an additional set of fine-grained traits beyond those provided by TopoRoot. The addition includes internode distances, root traits at every hierarchy level associated with a whorl, and root traits specific to above or below the ground. TopoRoot + is validated on a diverse collection of field-grown maize root crowns consisting of nine genotypes and spanning across three years. TopoRoot + runs in minutes for a typical volume size of [Formula: see text] on a desktop workstation. Our software and test dataset are freely distributed on Github. CONCLUSIONS: TopoRoot + advances the state-of-the-art in image-based phenotyping of excavated maize root crowns by offering more detailed architectural traits related to whorls and soil lines. The efficiency of TopoRoot + makes it well-suited for high-throughput image-based root phenotyping.

7.
Curr Gene Ther ; 23(5): 400-409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37317915

RESUMO

INTRODUCTION: Hydrocephalus is a common pediatric disorder of cerebral spinal fluid physiology resulting in abnormal expansion of the cerebral ventricles. However, the underlying molecular mechanisms remain unknown. METHODS: We performed proteomic analyses of cerebrospinal fluid (CSF) from 7 congenital hydrocephalus and 5 arachnoid cyst patients who underwent surgical treatment. Differentially expressed proteins (DEPs) were identified by label-free Mass Spectrometry followed by differential expression analysis. The GO and GSEA enrichment analysis was performed to explore the cancer hallmark pathways and immune-related pathways affected by DEPs. Then, network analysis was applied to reveal the location of DEPs in the human protein-protein interactions (PPIs) network. Potential drugs for hydrocephalus were identified based on drug-target interaction. RESULTS: We identified 148 up-regulated proteins and 82 down-regulated proteins, which are potential biomarkers for clinical diagnosis of hydrocephalus and arachnoid cyst. Functional enrichment analysis revealed that the DEPs were significantly enriched in the cancer hallmark pathways and immunerelated pathways. In addition, network analysis uncovered that DEPs were more likely to be located in the central regions of the human PPIs network, suggesting DEPs may be proteins that play important roles in human PPIs. Finally, we calculated the overlap of drug targets and the DEPs based on drugtarget interaction to identify the potential therapeutic drugs of hydrocephalus. CONCLUSION: The comprehensive proteomic analyses provided valuable resources for investigating the molecular pathways in hydrocephalus, and uncovered potential biomarkers for clinical diagnosis and therapy.


Assuntos
Cistos , Hidrocefalia , Humanos , Criança , Proteômica/métodos , Mapas de Interação de Proteínas/genética , Biomarcadores , Hidrocefalia/genética
8.
ACS Omega ; 8(17): 15488-15500, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151538

RESUMO

As an important energy base in central China, the Pingdingshan coalfield has abundant coal and geothermal resources. The cooperative exploration of coal and geothermal resources is significant for the comprehensive utilization of energy resources. This work collected coal-bearing samples from the Pingdingshan coalfield to investigate the tectono-thermal evolution of a high geothermal coalfield, especially the present geothermal field and hydrocarbon generation model. The geochemical results show that the Shanxi and Taiyuan source rocks have average R o values of 0.88 and 0.97%, respectively, with an average Rock-Eval T max value of 442 °C. Hydrocarbon generation of source rocks started at ∼205 Ma, with the highest rates at ∼170 Ma, reaching the maximum transformation ratio of 40-50% in the middle of the Early Cretaceous. The age and length of apatite fission tracks (AFTs) indicate that coal-bearing strata underwent significant post-depositional annealing after the Late Permian and suggest an abnormal thermal event that occurred in the Late Mesozoic. Meso-Cenozoic thermal event was mainly caused by the plutonic metamorphism of the Early Jurassic and magmatic thermal metamorphism of the Early Cretaceous, achieving a maximum paleotemperature of ∼140 °C. The magmatic thermal event resulted from the intensive post-orogenic extension of the Qinling-Dabie Orogenic Belt caused by the tectonic transition of the North and South China Plates. The present-day high geotemperature of Pingdingshan Coalfield is dominated by the horst structure caused by the regional extension of the basin-mountain system. The Cambrian limestone with a high thermal conductivity underlying coal measure collects deep heat, forming a heat accumulation center of this horst structure with a heat flow of 74 mW/m2 and a maximum temperature of ∼50 °C nowadays.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(8): 2176-82, 2011 Aug.
Artigo em Zh | MEDLINE | ID: mdl-22007412

RESUMO

The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation.

10.
J Nanosci Nanotechnol ; 21(1): 98-107, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213616

RESUMO

Based on X-ray diffraction, thin section and scanning electron microscopy observation, helium porosity and permeability tests and high-pressure mercury intrusion experiments, the pore and throat distributions of tight sandstone reservoirs were revealed on a nm-µm scale, and their control on gas productivity in the Shenfu area, northeastern Ordos Basin, China was discussed. The results show that lithic sandstones are the main rock types. As the burial depth increases, the quartz content increases, while the feldspar content decreases. There is approximately 5-25% of interstitial material varying between the different layers, and this interstitial material is mainly composed of mud, kaolinite and Fe-calcite. These tight sandstone reservoirs generally have porosities <10% and permeabilities <1 mD. Except for the Shiqianfeng Formation, the dissolution pores in other Upper Paleozoic strata all account for more than 80% of pores. The main pore types are mainly intragranular dissolution pores, intergranular dissolution pores and cement dissolution pores. Generally, the pore radius is approximately 500 nm, while the pore throats are much smaller are variable in size. Wells with high amounts of sandstones but low gas production rate are generally characterized by dominant intercrystalline pores, few macropores, and low effective porosity. The lithology and reservoir characteristics, which are controlled by primary deposition and secondary diagenesis, are speculated to be main factors controlling the gas contents.

11.
J Nanosci Nanotechnol ; 21(1): 636-645, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213664

RESUMO

Coal is a pressure-sensitive organic rock. The effect of tectonism on the structural evolution of medium-rank coal has been confirmed by the change in the crystal state of tectonic coal, but the organic molecular level response has not been reported. In this paper, three sets of medium-rank tectonic coals and symbiotic nontectonic coals were selected. The distributions of their functional groups and their molecular structure evolution were assessed using Fourier Transform Infrared Spectroscopy (FTIR), and their structural parameters were determined from the curve-fitting analysis. The nanoscale structural jump characteristics and mechanisms of medium-rank tectonic coal were revealed. Compared with symbiotic nontectonic coal, tectonism accelerated the exfoliation of side chains (groups) in the macromolecular structure, enlarged the aromatic system, and removed the unstable groups such as associative hydrogen bonds at first, which indicated that the molecular structure of tectonic coal was affected by nanoscale deformation, showing obvious advanced evolution characteristics. For the fat coal, the removal of side chains (groups) during the formation of tectonic coal makes the aromatic ring condensation obvious. For the coking coal, the formation of tectonic coal is dominated by cycloaliphatic dehydrogenation and aromatization, accompanied by the condensation of the aromatic rings. The tectonic coal formed from lean coal shows obvious aromatization characteristics. The molecular depolymerization and chemical tailoring caused by tectonism promotes the removal of hydrophobic side chains (groups) and activates some polar structure sites in coal. It is considered that the nanoscale structural jump of medium-rank tectonic coal is the result of the competition between the aromatic system and aliphatic structures.

12.
J Nanosci Nanotechnol ; 21(1): 646-658, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213665

RESUMO

Shale gas has been playing an increasingly important role in meeting global energy demands. The heterogeneity of the pore structure in organic-rich shales greatly affects the adsorption, desorption, diffusion and flow of gas. The pore size distribution (PSD) is a key parameter of the heterogeneity of the shale pore structure. In this study, the Neimark-Kiselev (N-K) fractal approach was applied to investigate the heterogeneity in the PSD of the lower Silurian organic-rich shales in South China using low-pressure N2 adsorption, total organic carbon (TOC) content, maturity analysis, X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) measurements. The results show that (1) the fractal dimension DN-K obtained by N-K theory better represents the heterogeneity of the PSD in shale at an approximately 1-100 nm scale. The DN-K values range from 2.3801 to 2.9915, with a mean of 2.753. The stronger the PSD heterogeneity is, the higher the DN-K value in shale is. (2) The clay-rich samples display multimodal patterns at pore sizes greater than 20 nm, which strongly effect the PSD heterogeneity. Quartz-rich samples display major peaks at less than or equal to a 10 nm pore size, with a smaller effect on the PSD heterogeneity in most cases. In other brittle mineral-rich samples, there are no obvious major peaks, and a weak heterogeneity of the PSDs is displayed. (3) A greater TOC content, maturity, clay content and pore size can cause stronger heterogeneity of the PSD and higher fractal dimensions in the shale samples. This study helps to understand and compare the PSD and fractal characteristics from different samples and provides important theoretical guidance and a scientific basis for the exploration and development of shale gas resources.

13.
J Nanosci Nanotechnol ; 21(1): 354-361, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213635

RESUMO

The preparation of high-density tailings is a prerequisite for cemented paste backfill technology, and the flocculated fine tailings of sealed water leads to challenges in the slurry thickening of tailings. Shearing conditions can compact the micro floc structure to improve the underflow concentration. The nm-µm scales of pore characteristics and connectivity are essential for the dewatering process. The computed tomography (CT) results show that the underflow concentration increases from 62.3 wt% to 68.6 wt% after undergoing rake shearing at 2 rpm, and the porosity decreases from 42.7% to 35.54%. The shearing conditions reduces the spheres and sticks by 43.14% and 43.3%, respectively, from the pore network model (PNM). The seepage flow states were affected by the changes in the pore structure. The maximum surface velocity and the maximum internal pressure decrease after undergoing shearing. Shearing conditions can break the micro floc structures, and the fine particles can fill in the micron-scale pores by gravity and shearing conditions, resulting in the forced drainage of water into the pores. Shearing conditions can break the thickening floc network structures; natural fine particles can fill the micron-scale pores by gravity and shearing conditions. The upward seepage of sealed water along the µm-scale pore channel causes a higher bed concentration. However, the sealed water in the nm-scale pores cannot flow upward due to water cohesion and particle adhesion resistance.

14.
J Nanosci Nanotechnol ; 21(1): 495-504, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213648

RESUMO

The production and evolution of fractures during coal creep will directly affect the occurrence, extraction and flow law of gas in a coal seam. The coal fracture evolution under creep conditions was studied by qualitative analysis and quantitative characterization. At a room temperature of 24 °C, triaxial compression creep tests of coal samples from the Zhaogu No. 2 coal mine in Jiaozuo were carried out under different loading conditions (0 MPa, 6 MPa, 9 MPa and 12 MPa), and low field nuclear magnetic resonance technique tests and industrial CT scanning experiments were performed. The obtained CT images were analyzed with the MATLAB software for equalization and binary image processing. The development and distribution of fractures in coal samples under different loading conditions were studied. The results show that the internal fractures are unevenly distributed and controlled by the main fracture, and the expansion direction of fractures is parallel to the direction of the maximum effective compressive stress. The number of fractures shows an increasing trend with the increase of axial stress, and the pace of growth of new fractures accelerates. The primary fractures in the coal body expand and generate new fractures, which improves the connectivity of the fractures in the coal body. The research results can provide a basis for studying the gas flow rule around the borehole and determining the influence range of the borehole.

15.
J Nanosci Nanotechnol ; 21(1): 538-546, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213652

RESUMO

The complexity and multiscale structure of coal pores significantly influence the gas diffusion and seepage characteristics of coal. To apply small angle X-ray scattering (SAXS) to study the coal pore structure parameters within the scale of 1-100 nm in the methane adsorption process, the X-ray window was optimized and a gas adsorption chamber was designed to interface with the small angle X-ray scattering platform. The fractal dimension and porosity of Hami coal samples under different methane pressures were studied using the small angle X-ray scattering platform and adsorption chamber. The surface and nanopore fractal information of the nanopores in coal were distinguished. The variation trends of the pores and surface fractal dimension with time under the same methane pressure were compared. The results indicate that the surface dimension changes from 2.56 to 2.75, and the extremum point may indicate that the primary nanopore structure is crushed by the adsorbed gas after approximately 15 minutes. This work clarifies that the fractal dimension can characterize the changes in nanopores in the process of gas adsorption by using SAXS. According to the fractal characteristics, the adsorption of gas in coal nanopores is summarized as four steps: expansion from adsorbance, deformation, crushing and recombination. The minimum porosity is 0.95% and the extreme value point is 1.47%. This work also shows that decrease in surface energy affect the porosity changes in nano-size pores. This work is of some significance to coalbed methane permeability improvement and gas extraction.

16.
J Nanosci Nanotechnol ; 21(1): 698-706, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213670

RESUMO

To evaluate the gas content characteristics of nanopores developed in a normal pressure shale gas reservoir, the Py1 well in southeast Chongqing was selected as a case study. A series of experiments was performed to analyze the total organic carbon content, porosity and gas content using core material samples of the Longmaxi Shale from the Py1 well. The results show that the adsorbed gas and free gas content in the nanopores developed in the Py1 well in the normal pressure shale gas reservoir range from 0.46-2.24 m3/t and 0.27-0.83 m3/t, with average values of 1.38 m3/t and 0.50 m3/t, respectively. The adsorbed gas is dominant in the shale gas reservoir, accounting for 53.05-88.23% of the total gas with an average value of 71.43%. The Gas Research Institute (GRI) porosity and adsorbed gas content increase with increasing total organic carbon content. The adsorbed gas and free gas contents both increase with increasing porosity value, and the rate of increase in the adsorbed gas content with porosity is larger than that of free gas. Compared with the other five shale reservoirs in America, the Lower Silurian Longmaxi Shale in the Py1 well developed nanopores but without overpressure, which is not favorable for shale gas enrichment.

17.
J Nanosci Nanotechnol ; 21(1): 795-802, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213681

RESUMO

As an important industrial material, triclosan is widely used in manufacturing, and similar to many materials of its kind, triclosan causes significant environmental pollution, especially water pollution. In the organic pollutant degradation field, iron nanoparticles are among the most popular catalysts and have been successfully applied in various kinds of environmental modification, but there is still plenty of room for improvement. As we will show in this study, combined with nickel, the montmorillonite-supported Fe-Ni bimetallic nano-systems gained better organic contaminant degradation ability and stability than iron nanoparticles. By means of X-ray diffraction (XRD), Brunauer- Emmett-Teller (BET) surface area analysis, Fourier transform infrared (FTIR) spectra analysis and scanning electron microscopy (SEM), the characteristics of the montmorillonite-supported Fe-Ni nanocomposites were studied in detail. BET analysis shows that montmorillonite restrains the aggregation of Fe-Ni to reduce the size of its particles. By adding montmorillonite, Fe-Ni materials are transformed into uniform mesoporous structures, which are beneficial for adsorption and catalysis. The layers of montmorillonite and zero-valent metal constitute a "house-of-cards" structure. Based on FTIR spectral analysis, the stretching vibration of montmorillonite hydroxyl groups is present only in the spectra of supported nanoparticles and not in the spectra of unsupported nanoparticles. The degradation ability of different catalysts is tested by a series of experiments and measured by checking the remaining triclosan in polluted water. The test results confirmed that Mont/Fe-Ni nanoparticles exhibit the best removal efficiency, which is approximately 80% after 90 min.

18.
Plant Methods ; 17(1): 127, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903248

RESUMO

BACKGROUND: 3D imaging, such as X-ray CT and MRI, has been widely deployed to study plant root structures. Many computational tools exist to extract coarse-grained features from 3D root images, such as total volume, root number and total root length. However, methods that can accurately and efficiently compute fine-grained root traits, such as root number and geometry at each hierarchy level, are still lacking. These traits would allow biologists to gain deeper insights into the root system architecture. RESULTS: We present TopoRoot, a high-throughput computational method that computes fine-grained architectural traits from 3D images of maize root crowns or root systems. These traits include the number, length, thickness, angle, tortuosity, and number of children for the roots at each level of the hierarchy. TopoRoot combines state-of-the-art algorithms in computer graphics, such as topological simplification and geometric skeletonization, with customized heuristics for robustly obtaining the branching structure and hierarchical information. TopoRoot is validated on both CT scans of excavated field-grown root crowns and simulated images of root systems, and in both cases, it was shown to improve the accuracy of traits over existing methods. TopoRoot runs within a few minutes on a desktop workstation for images at the resolution range of 400^3, with minimal need for human intervention in the form of setting three intensity thresholds per image. CONCLUSIONS: TopoRoot improves the state-of-the-art methods in obtaining more accurate and comprehensive fine-grained traits of maize roots from 3D imaging. The automation and efficiency make TopoRoot suitable for batch processing on large numbers of root images. Our method is thus useful for phenomic studies aimed at finding the genetic basis behind root system architecture and the subsequent development of more productive crops.

19.
J Nanosci Nanotechnol ; 21(1): 195-211, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213623

RESUMO

Understanding the controls on composition changes and porosity evolution in the critical zone of shale remains a major challenge. The aim of the present study is to develop a model of the changes in mineral compositions, chemical compositions and nanopore formation in shale during the initial weathering stage. To understand these processes, we selected a Silurian shale profile rich in pyrite and organic matter located in South China. Based on X-ray diffraction (XRD) and bulk elemental data, the variations in mineralogical and chemical compositions with depth were studied. To characterize the full pore size spectrum and to gain insight into the nature of secondary pores and their relationship with weathering, nuclear magnetic resonance (NMR) measurements and petrographic observations were combined with scanning electron microscopy (SEM) imaging. The results show that Al and K are enriched slightly, while Ca and Na are depleted in the upper part of the weathering profile. Si, Mn and Ti are relatively stable from the bottom to the top of the profile. Quartz, feldspar, mica, illite and chlorite are the main minerals in the parent rock, and they are relatively stable along the profile. The rock density gradually decreases from 2.6 g/cm³ to 2.1 g/cm³ from the bottom to the top, and the color of the shales changes from black to grayish yellow, but no secondary minerals are detected. The chemical weathering of black shale is dominated by the oxidation of pyrite and organic matter, giving rise to color variation and nanopore formation. The increase in interparticle pores at the nanometer-micron scale is initiated by the dissolution of easily weathered components such as organic matter and pyrite. The removal of clay minerals and tiny particles by groundwater seepage may be the main cause of porosity enhancement during the initial weathering stage. This study suggests that nanoporosity may play an important role in the process of fluid-rock interaction within black shale during the initial weathering stage.

20.
J Nanosci Nanotechnol ; 21(1): 246-261, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213627

RESUMO

The mineralogical and compositional characteristics of gold-bearing minerals and the occurrence of gold are not only of great significance to exploring the sources of ore-forming materials and their formation mechanisms but also helpful for designing reasonable beneficiations and smelting schemes and achieving remarkable economic benefits. This paper presents an integrated study on the crystal characteristics, elemental composition and distribution of pyrite (the main gold-bearing minerals), on the basis of electron probe microanalysis (EPMA), scanning electron microscopy (SEM), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and nano-secondary ion mass spectrometry (NanoSIMS). The occurrence of gold in the Shuiyindong gold deposit and Ashawayi gold deposit has been studied by means of microscopy, SEM, and EPMA images, elemental correlations, S-Fe-As ternary diagrams, logAs-logAu diagrams and Au/As ratios. The gold in pyrite of the Shuiyindong deposit is in the form of nano gold inclusions and lattice gold. The gold in pyrite of the Ashawayi deposit dominantly exists in the form of nano gold inclusions or is present as micro-nano gold particles in the cracks or edges of pyrite, some of which can exist as lattice gold. The ore-forming hydrothermal solution of the Shuiyindong gold deposit is mainly underground hot brine, but it may be reformed by a deep magmatic hydrothermal solution or volcanic-subvolcanic hydrothermal solution. The ore-forming hydrothermal solution of the Ashawayi gold deposit is mainly derived from the metamorphic hydrothermal solution formed during the orogenic process, and the ore-forming process or post-mineralization process may be reformed by the leaching of underground hot brine. Finally, the characteristics of ore-forming fluids and evolution of the two types of deposits are determined via pyrite element surface scanning. This paper shows that micro-nanoscale study of gold-bearing pyrite is of great significance to understanding the gold mineralization process and is worth further study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA