Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(13): 5473-5480, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35621512

RESUMO

The free transport of anions in a Li metal battery can cause multiple issues, including a high anion transference number, space charge, and concentration polarization, eventually leading to uncontrolled dendrite formation and decreased performance. Herein, we report an anion-anchoring nano-CaCO3 (NC) coating derived from eggshell biowaste for stabilizing Li metal anodes. As the adsorption of local TFSI- anions onto the NC adsorbent can undermine the anion concentration gradient and promote rapid Li-ion diffusion, it can effectively inhibit the proliferation of Li dendrites assisted by the NC coating. Consequently, Li/Cu cells with NC@Cu electrode can achieve a high Coulombic efficiency of ∼98.4% for more than 420 cycles and can even reach ∼99.1% at an ultrahigh areal capacity of 20 mAh cm-2. In particular, full cells with NC/Li@Cu electrodes show a stable lifespan of over 240 cycles with an average efficiency of ∼99.8% at a low N/P ratio of ∼3.3.


Assuntos
Biomassa , Ânions , Transporte de Íons
2.
Nano Lett ; 22(20): 8346-8354, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36219091

RESUMO

Sulfide electrolytes promise superior ion conduction in all-solid-state lithium (Li) metal batteries, while suffering harsh hurdles including interior dendrite growth and instability against Li and moist air. A prerequisite for solving such issues is to uncover the nature of the Li/sulfide interface. Herein, air-stable Li4SnS4 (LSS) as a prototypical sulfide electrolyte is selected to visualize the dynamic evolution and failure of the Li/sulfide interface by cryo-electron microscopy. The interfacial parasitic reaction (2Li + 2Li4SnS4 = 5Li2S + Sn2S3) is validated by direct detection of randomly distributed Li2S and Sn2S3 crystals. A bifunctional buffering layer is consequently introduced by self-diffusion of halide into LSS. Both the interface and the grain boundaries in LSS have been stabilized, eliminating the growing path of Li dendrites. The buffering layer enables the durability of Li symmetric cell (1500 h) and high-capacity retention of the LiFePO4 full-cell (95%). This work provides new insights into the hierarchical design of sulfide electrolytes.

3.
Nano Lett ; 22(3): 1374-1381, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35060737

RESUMO

The proliferation of lithium (Li) dendrites stemming from uncontrollable Li deposition seriously limits the practical application of Li metal batteries. The regulation of uniform Li deposition is thus a prerequisite for promoting a stable Li metal anode. Herein, a commercial lithiophilic skeleton of soybean protein fiber (SPF) is introduced to homogenize the Li-ion flux and induce the biomimetic Li growth behavior. Especially, the SPF can promote the formation of a LiF-nanocrystal-enriched interface upon cycling, resulting in low interfacial impedance and rapid charge transfer kinetics. Finally, the SPF-mediated Li metal anode can achieve high Coulombic efficiency of 98.7% more than 550 cycles and a long-term lifespan over 3400 h (∼8500 cycles) in symmetric tests. Furthermore, the practical pouch cell modified with SPF can maintain superior electrochemical performance over 170 cycles under a low N/P ratio and high mass loading of the cathode.


Assuntos
Fontes de Energia Elétrica , Lítio , Nanopartículas , Proteínas de Soja , Eletrodos , Lítio/química , Proteínas de Soja/química
4.
Acc Chem Res ; 54(9): 2088-2099, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33856759

RESUMO

Lithium (Li)-metal batteries are one of the most promising candidates for the next-generation energy storage devices due to their ultrahigh theoretical capacity. The realistic development of a Li metal battery is greatly impeded by the uncontrollable dendrite proliferation upon the chemically active metallic Li. To visualize the micromorphology or even the atomic structure of Li deposits is undoubtedly crucial, while imaging the sensitive Li still faces a huge challenge technically.Cryogenic electron microscopy (cryo-EM), an emerging imagery technology renowned for structural elucidation of biomaterials, is offering increased possibilities for analyzing sensitive battery materials reaching subangstrom resolution. Particularly for revealing metallic Li, cryo-EM exhibits remarkable superiority compared with the conventional electron imaging technique. On the one hand, cryo-EM could prevent the low melting-point Li metal from being damaged by the high electron dose induced thermal effect. On the other hand, the extremely low temperature immensely retards the rate of the side reaction where the Li reacts with the atmosphere or water vapor before the vacuum state. Consequently, the cryo-EM could acquire a high-resolution image of electron-beam sensitive Li in its native state at the nano- or even atomic scale, thus benefiting the fundamental perception and rational design of Li metal anodes.Thus, in this Account, we aim to highlight the significance of cryo-EM in analyzing metallic Li and developing a high-performance Li metal battery. We focus on how highly resolved cryo-EM realizes the breakthrough in detecting the crucial evolution during battery cycling, e.g., lattice ordering of Li, nanostructures of the solid electrolyte interphase (SEI), nucleation sites, and interface between the solid electrolyte and the Li anode. First, we briefly summarize the progress of Li metal imaging by cryo-EM in a timed sequence. In particular, the recent studies from our group are classified in order to systematically delineate the advantages that cryo-transmission electron microscopy (cryo-TEM) addressed on understanding and developing the Li metal battery. Second, the efforts of exhibiting the long-range ordering Li lattice are described to cognize the crystal orientation of both Li dendrites and uniform spheres. Subsequently, the nanostructures of SEI detected by cryo-TEM, maybe the most key information during Li plating/stripping, are systematically summarized. Benefitting from the subangstrom visualization on the newly formed and the particular inactive SEI after long-term cycling, we emphasize cryo-TEM's guidance in designing a robust, highly Li+ conductive, and Li-restoration facilitated SEI. We then propose the strategy of introducing a nucleation-site to enable uniform Li deposition by showing the evidence of Li nucleation atomically monitored through cryo-TEM. Moreover, the series of the work of atomic imagery and corresponding optimization of the interfaces between the polymer-based solid electrolyte and the Li anode are concluded. Finally, critical perspectives about the further step of cryo-TEM in the realistic development of high-energy density battery systems are also succinctly reviewed.

5.
Angew Chem Int Ed Engl ; 61(52): e202214386, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36328999

RESUMO

Solid electrolyte interphase (SEI) has received considerable attention due to its vital role in stabilizing Li anode. However, native and many artificial SEIs often suffer from cracking and fragmentation under dendrite impact or long-term repeated volume variation, causing capacity decay. Herein, a mechanically interlocked network (MIN) was innovatively designed as interfacial layer to protect Li anode by incorporating the unique energy dissipation capability, which helps Li anode survive repeated volume variation during long-term cycling. As a result, symmetric cell with MIN-coated Li anode (MIN@Li) exhibited prolonged cycling life of 1500 hours at 1 mA cm-2 . The full cell using LFP cathode (13.5 mg cm-2 ) cycled stably for 500 cycles with capacity retention over 88 % (1 C). Our results highlight a creative application of MIN in Li anode, and its unique energy dissipation capability promises future success in other battery fields suffering from repeated volume variations.

6.
Adv Mater ; 36(9): e2306992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37917072

RESUMO

Potassium metal battery is an appealing candidate for future energy storage. However, its application is plagued by the notorious dendrite proliferation at the anode side, which entails the formation of vulnerable solid electrolyte interphase (SEI) and non-uniform potassium deposition on the current collector. Here, this work reports a dual-modification design of aluminum current collector to render dendrite-free potassium anodes with favorable reversibility. This work achieves to modulate the electronic structure of the designed current collector and accordingly attain an SEI architecture with robust inorganic-rich constituents, which is evidenced by detailed cryo-EM inspection and X-ray depth profiling. The thus-produced SEI manages to expedite ionic conductivity and guide homogeneous potassium deposition. Compared to the potassium metal cells assembled using typical aluminum current collector, cells based on the designed current collector realize improved rate capability (maintaining 400 h under 50 mA cm-2 ) and low-temperature durability (stable operation at -50 °C). Moreover, scalable production of the current collector allows for the sustainable construction of high-safety potassium metal batteries, with the potential for reducing the manufacturing cost.

7.
Adv Mater ; : e2404815, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719211

RESUMO

The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.

8.
Nat Commun ; 14(1): 8269, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092794

RESUMO

Reactive negative electrodes like lithium (Li) suffer serious chemical and electrochemical corrosion by electrolytes during battery storage and operation, resulting in rapidly deteriorated cyclability and short lifespans of batteries. Li corrosion supposedly relates to the features of solid-electrolyte-interphase (SEI). Herein, we quantitatively monitor the Li corrosion and SEI progression (e.g., dissolution, reformation) in typical electrolytes through devised electrochemical tools and cryo-electron microscopy. The continuous Li corrosion is validated to be positively correlated with SEI dissolution. More importantly, an anti-corrosion and interface-stabilizing artificial passivation layer comprising low-solubility polymer and metal fluoride is designed. Prolonged operations of Li symmetric cells and Li | |LiFePO4 cells with reduced Li corrosion by ~74% are achieved (0.66 versus 2.5 µAh h-1). The success can further be extended to ampere-hour-scale pouch cells. This work uncovers the SEI dissolution and its correlation with Li corrosion, enabling the durable operation of Li metal batteries by reducing the Li loss.

9.
ACS Nano ; 17(22): 22755-22765, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37931128

RESUMO

Separator engineering is a promising route to designing advanced lithium (Li) metal anodes for high-performance Li metal batteries (LMBs). Conventional separators are incapable of regulating the Li+ diffusion across the solid electrolyte interphase (SEI), leading to severe dendritic deposition. To address this issue, a polypropylene (PP) separator modified by spray coating the Cl-terminated titanium carbonitride MXene ink is designed (PP@Ti3CNCl2). The lithiophilic MXene provides excellent electrolyte wettability and low Li+ diffusion barriers, finally enhancing the Li+ diffusion kinetics of excessively stable SEI. The X-ray photoelectron spectroscopy depth profiling as well as cryo-transmission electron microscopy reveals that a gradient SEI hierarchy with evenly distributed LiF and LiCl is spontaneously formed during the electrochemical process. As a consequence, PP@Ti3CNCl2 delivers a high Coulombic efficiency (99.15%) coupled with a prolonged lifespan of over 5500 h in half cells and 3100 cycles at 2 C in full cells. This work offers an effective strategy for constructing dendrite-free and Li+ permeable interfaces toward high-energy-density LMBs.

10.
ACS Nano ; 16(6): 9883-9893, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35593384

RESUMO

The lithium metal anode (LMA) is regarded as one of the most promising candidates for high-energy Li-ion batteries. However, the naturally formed solid electrolyte interface (SEI) is unsatisfied, which would cause continuous dendrite growth and thus prevent the practical application of the LMA. Herein, a stable electrolytic carbon-based hybrid (ECH) artificial SEI is constructed on the LMA via the in-situ electrodeposition of an electrolyte sovlent at ultrahigh voltage. This nanostructured carbon strengthened SEI exhibits much improved ionic conductivity and mechanical strength, which enables uniform Li+ diffusion, stabilizes the interface between the electrolyte and lithium metal, and inhibits Li dendrite breeding and Li pulverization. With the protection of this ECH layer, the symmetrical cells show stable long-term cycling performance over 500 h with an ultrahigh plating capacity of 5 mAh cm-2 at the current density of 5 mA cm-2. A full cell assembled with a Li[Ni0.8Co0.1Mn0.1]O2 or LiFePO4 cathode exhibits a long-term cycling life and excellent capacity retention.

11.
Sci Adv ; 6(10): eaaz3112, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32181364

RESUMO

The lithium metal anode (LMA) is considered as a promising star for next-generation high-energy density batteries but is still hampered by the severe growth of uncontrollable lithium dendrites. Here, we design "spansules" made of NaMg(Mn)F3@C core@shell microstructures as the matrix for the LMA, which can offer a long-lasting release of functional ions into the electrolyte. By the assistance of cryogenic transmission electron microscopy, we reveal that an in situ-formed metal layer and a unique LiF-involved bilayer structure on the Li/electrolyte interface would be beneficial for effectively suppressing the growth of lithium dendrites. As a result, the spansule-modified anode affords a high Coulombic efficiency of 98% for over 1000 cycles at a current density of 2 mA cm-2, which is the most stable LMA reported so far. When coupling this anode with the Li[Ni0.8Co0.1Mn0.1]O2 cathode, the practical full cell further exhibits highly improved capacity retention after 500 cycles.

12.
Adv Mater ; 32(34): e2000223, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32656883

RESUMO

The application of solid polymer electrolytes (SPEs) is still inherently limited by the unstable lithium (Li)/electrolyte interface, despite the advantages of security, flexibility, and workability of SPEs. Herein, the Li/electrolyte interface is modified by introducing Li2 S additive to harvest stable all-solid-state lithium metal batteries (LMBs). Cryo-transmission electron microscopy (cryo-TEM) results demonstrate a mosaic interface between poly(ethylene oxide) (PEO) electrolytes and Li metal anodes, in which abundant crystalline grains of Li, Li2 O, LiOH, and Li2 CO3 are randomly distributed. Besides, cryo-TEM visualization, combined with molecular dynamics simulations, reveals that the introduction of Li2 S accelerates the decomposition of N(CF3 SO2 )2 - and consequently promotes the formation of abundant LiF nanocrystals in the Li/PEO interface. The generated LiF is further verified to inhibit the breakage of CO bonds in the polymer chains and prevents the continuous interface reaction between Li and PEO. Therefore, the all-solid-state LMBs with the LiF-enriched interface exhibit improved cycling capability and stability in a cell configuration with an ultralong lifespan over 1800 h. This work is believed to open up a new avenue for rational design of high-performance all-solid-state LMBs.

13.
Nat Commun ; 11(1): 488, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980618

RESUMO

Metallic lithium anodes are highly promising for revolutionizing current rechargeable batteries because of their ultrahigh energy density. However, the application of lithium metal batteries is considerably impeded by lithium dendrite growth. Here, a biomacromolecule matrix obtained from the natural membrane of eggshell is introduced to control lithium growth and the mechanism is motivated by how living organisms regulate the orientation of inorganic crystals in biomineralization. Specifically, cryo-electron microscopy is utilized to probe the structure of lithium at the atomic level. The dendrites growing along the preferred < 111 > crystallographic orientation are greatly suppressed in the presence of the biomacromolecule. Furthermore, the naturally soluble chemical species in the biomacromolecules can participate in the formation of solid electrolyte interphase upon cycling, thus effectively homogenizing the lithium deposition. The lithium anodes employing bioinspired design exhibit enhanced cycling capability. This work sheds light on identifying substantial challenges in lithium anodes for developing advanced batteries.


Assuntos
Fontes de Energia Elétrica , Lítio , Animais , Biomineralização , Engenharia Química , Microscopia Crioeletrônica , Cristalização , Casca de Ovo/química , Técnicas Eletroquímicas , Eletrodos , Lítio/química , Substâncias Macromoleculares/química , Trifluoretanol/química
14.
ACS Appl Mater Interfaces ; 11(27): 24205-24211, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31250624

RESUMO

With multiple properties, green carbon nanomaterials with high specific surface area have become extensively attractive as energy storage devices with environmental-friendly features. The primary synthesis attempts were based on alkalis activation, which, however, faced the dilemma of low utilization rate of carbon sources. Herein, the green carbon with ultrahigh surface area (up to 3560 m2/g) was prepared by the KOH-assisted biomass carbonization. Moreover, the redundant K2O steam and CxHy flow were further utilized; as a result, the carbon materials with a wide range of morphological diversity were collected on the Cu foam. Accordingly, we carried out density functional theory simulations to reveal the mechanism of O-adatom-promoted CH4 dissociation over the Cu surface for carbon formation. The electrodes of electrochemical capacitor fabricated by carbon synthesis possess a 170% higher specific capacitance compared with commercial carbon electrodes. As such, this strategy might be promising in developing hierarchical carbons along with sufficient carbon sources for broadening their potential applications.

15.
ACS Appl Mater Interfaces ; 11(36): 33022-33032, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31424188

RESUMO

Electrode materials that act through the electrochemical conversion mechanism, such as metal selenides, have been considered as promising anode candidates for lithium-ion batteries (LIBs), although their fast capacity attenuation and inadequate electrical conductivity are impeding their practical application. In this work, these issues are addressed through the efficient fabrication of MnSe nanoparticles inside porous carbon hierarchical architectures for evaluation as anode materials for LIBs. Density functional theory simulations indicate that there is a completely irreversible phase transformation during the initial cycle, and the high structural reversibility of ß-MnSe provides a low energy barrier for the diffusion of lithium ions. Electron localization function calculations demonstrate that the phase transformation leads to high charge transfer kinetics and a favorable lithium ion diffusion coefficient. Benefitting from the phase transformation and unique structural engineering, the MnSe/C chestnut-like structures with boosted conductivity deliver enhanced lithium storage performance (885 mA h g-1 at a current density of 0.2 A g-1 after 200 cycles), superior cycling stability (a capacity of 880 mA h g-1 at 1 A g-1 after 1000 cycles), and outstanding rate performance (416 mA h g-1 at 2 A g-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA