Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; : 120742, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029606

RESUMO

PURPOSE: The pathological hallmarks of Alzheimer's disease (AD), amyloid, tau, and associated neurodegeneration, are present in the cortical gray matter (GM) years before symptom onset, and at significantly greater levels in carriers of the apolipoprotein E4 (APOE4) allele. Their respective biomarkers, A/T/N, have been found to correlate with aspects of brain biochemistry, measured with magnetic resonance spectroscopy (MRS), indicating a potential for MRS to augment the A/T/N framework for staging and prediction of AD. Unfortunately, the relationships between MRS and A/T/N biomarkers are unclear, largely due to a lack of studies examining them in the context of the spatial and temporal model of T/N progression. Advanced MRS acquisition and post-processing approaches have enabled us to address this knowledge gap and test the hypotheses, that glutamate-plus-glutamine (Glx) and N-acetyl-aspartate (NAA), metabolites reflecting synaptic and neuronal health, respectively, measured from regions on the Braak stage continuum, correlate with: (i) cerebrospinal fluid (CSF) p-tau181 level (T), and (ii) hippocampal volume or cortical thickness of parietal lobe GM (N). We hypothesized that these correlations will be moderated by Braak stage and APOE4 genotype. METHODS: We conducted a retrospective imaging study of 34 cognitively unimpaired elderly individuals who received APOE4 genotyping and lumbar puncture from pre-existing prospective studies at the NYU Grossman School of Medicine between October 2014 and January 2019. Subjects returned for their imaging exam between April 2018 and February 2020. Metabolites were measured from the left hippocampus (Braak II) using a single-voxel semi-adiabatic localization by adiabatic selective refocusing sequence; and from the bilateral posterior cingulate cortex (PCC; Braak IV), bilateral precuneus (Braak V), and bilateral precentral gyrus (Braak VI) using multi-voxel echo-planar spectroscopic imaging sequence. Pearson and Spearman correlations were used to examine the relationships between absolute levels of choline, creatine, myo-inositol, Glx, and NAA and CSF p-tau181, and between these metabolites and hippocampal volume or parietal cortical thicknesses. Covariates included age, sex, years of education, Fazekas score, and months between CSF collection and MRI exam. RESULTS: There was a direct correlation between hippocampal Glx and CSF p-tau181 in APOE4 carriers (Pearson's r = 0.76, p = 0.02), but not after adjusting for covariates. In the entire cohort, there was a direct correlation between hippocampal NAA and hippocampal volume (Spearman's r = 0.55, p = 0.001), even after adjusting for age and Fazekas score (Spearman's r = 0.48, p = 0.006). This relationship was observed only in APOE4 carriers (Pearson's r = 0.66, p = 0.017), and was also retained after adjustment (Pearson's r = 0.76, p = 0.008; metabolite-by-carrier interaction p = 0.03). There were no findings in the PCC, nor in the negative control (late Braak stage) regions of the precuneus and precentral gyrus. CONCLUSIONS: Our findings are in line with the spatially- and temporally-resolved Braak staging model of pathological severity in which the hippocampus is affected earlier than the PCC. The correlations, between MRS markers of synaptic and neuronal health and, respectively, T and N pathology, were found exclusively within APOE4 carriers, suggesting a connection with AD pathological change, rather than with normal aging. We therefore conclude that MRS has the potential to augment early A/T/N staging, with the hippocampus serving as a more sensitive MRS target compared to the PCC.

2.
Magn Reson Med ; 91(4): 1284-1300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38029371

RESUMO

PURPOSE: Absolute spectral quantification is the standard method for deriving estimates of the concentration from metabolite signals measured using in vivo proton MRS (1 H-MRS). This method is often reported with minimum variance estimators, specifically the Cramér-Rao lower bound (CRLB) of the metabolite signal amplitude's scaling factor from linear combination modeling. This value serves as a proxy for SD and is commonly reported in MRS experiments. Characterizing the uncertainty of absolute quantification, however, depends on more than simply the CRLB. The uncertainties of metabolite-specific (T1m , T2m ), reference-specific (T1ref , T2ref ), and sequence-specific (TR , TE ) parameters are generally ignored, potentially leading to an overestimation of precision. In this study, the propagation of uncertainty is used to derive a comprehensive estimate of the overall precision of concentrations from an internal reference. METHODS: The propagated uncertainty is calculated using analytical derivations and Monte Carlo simulations and subsequently analyzed across a set of commonly measured metabolites and macromolecules. The effect of measurement error from experimentally obtained quantification parameters is estimated using published uncertainties and CRLBs from in vivo 1 H-MRS literature. RESULTS: The additive effect of propagated measurement uncertainty from applied quantification correction factors can result in up to a fourfold increase in the concentration estimate's coefficient of variation compared to the CRLB alone. A case study analysis reveals similar multifold increases across both metabolites and macromolecules. CONCLUSION: The precision of absolute metabolite concentrations derived from 1 H-MRS experiments is systematically overestimated if the uncertainties of commonly applied corrections are neglected as sources of error.


Assuntos
Encéfalo , Prótons , Humanos , Espectroscopia de Ressonância Magnética/métodos , Incerteza , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Método de Monte Carlo , Substâncias Macromoleculares/metabolismo
3.
NMR Biomed ; : e5220, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054694

RESUMO

Posttraumatic stress disorder (PTSD) is a chronic psychiatric condition that follows exposure to a traumatic stressor. Though previous in vivo proton (1H) MRS) research conducted at 4 T or lower has identified alterations in glutamate metabolism associated with PTSD predisposition and/or progression, no prior investigations have been conducted at higher field strength. In addition, earlier studies have not extensively addressed the impact of psychiatric comorbidities such as major depressive disorder (MDD) on PTSD-associated 1H-MRS-visible brain metabolite abnormalities. Here we employ 7 T 1H MRS to examine concentrations of glutamate, glutamine, GABA, and glutathione in the medial prefrontal cortex (mPFC) of PTSD patients with MDD (PTSD+MDD+; N = 6) or without MDD (PTSD+MDD-; N = 5), as well as trauma-unmatched controls without PTSD but with MDD (PTSD-MDD+; N = 9) or without MDD (PTSD-MDD-; N = 18). Participants with PTSD demonstrated decreased ratios of GABA to glutamine relative to healthy PTSD-MDD- controls but no single-metabolite abnormalities. When comorbid MDD was considered, however, MDD but not PTSD diagnosis was significantly associated with increased mPFC glutamine concentration and decreased glutamate:glutamine ratio. In addition, all participants with PTSD and/or MDD collectively demonstrated decreased glutathione relative to healthy PTSD-MDD- controls. Despite limited findings in single metabolites, patterns of abnormality in prefrontal metabolite concentrations among individuals with PTSD and/or MDD enabled supervised classification to separate them from healthy controls with 80+% sensitivity and specificity, with glutathione, glutamine, and myoinositol consistently among the most informative metabolites for this classification. Our findings indicate that MDD can be an important factor in mPFC glutamate metabolism abnormalities observed using 1H MRS in cohorts with PTSD.

4.
Magn Reson Med ; 90(3): 1228-1241, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37145035

RESUMO

PURPOSE: To design and implement a multi-coil (MC) array for B0 field generation for image encoding and simultaneous advanced shimming in a novel 1.5T head-only MRI scanner. METHODS: A 31-channel MC array was designed following the unique constraints of this scanner design: The vertically oriented magnet is very short, stopping shortly above the shoulders of a sitting subject, and includes a window for the subject to see through. Key characteristics of the MC hardware, the B0 field generation capabilities, and thermal behavior, were optimized in simulations prior to its construction. The unit was characterized via bench testing. B0 field generation capabilities were validated on a human 4T MR scanner by analysis of experimental B0 fields and by comparing images for several MRI sequences acquired with the MC array to those acquired with the system's linear gradients. RESULTS: The MC system was designed to produce a multitude of linear and nonlinear magnetic fields including linear gradients of up to 10 kHz/cm (23.5 mT/m) with MC currents of 5 A per channel. With water cooling it can be driven with a duty cycle of up to 74% and ramp times of 500 µs. MR imaging experiments encoded with the developed multi-coil hardware were largely artifact-free; residual imperfections were predictable, and correctable. CONCLUSION: The presented compact multi-coil array is capable of generating image encoding fields with amplitudes and quality comparable to clinical systems at very high duty cycles, while additionally enabling high-order B0 shimming capabilities and the potential for nonlinear encoding fields.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Campos Magnéticos , Artefatos
5.
NMR Biomed ; 35(8): e4739, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393706

RESUMO

B0 inhomogeneity leads to imaging artifacts in cardiac magnetic resonance imaging (MRI), in particular dark band artifacts with steady-state free precession pulse sequences. The limited spatial resolution of MR-derived in vivo B0 maps and the lack of population data prevent systematic analysis of the problem at hand and the development of optimized B0 shim strategies. We used readily available clinical computed tomography (CT) images to simulate the B0 conditions in the human heart at high spatial resolution. Calculated B0 fields showed consistency with MRI-based B0 measurements. The B0 maps for both the simulations and in vivo measurements showed local field inhomogeneities in the vicinity of lung tips with dominant Z3 spherical harmonic terms in the field distribution. The presented simulation approach allows for the derivation of B0 field conditions at high spatial resolution from CT images and enables the development of subject- and population-specific B0 shim strategies for the human heart.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Artefatos , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X
6.
Magn Reson Med ; 85(2): 831-844, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32892400

RESUMO

PURPOSE: We demonstrate the feasibility of MRI with missing-pulse steady-state free precession (MP-SSFP) in a 4T magnet with artificially degraded homogeneity. METHODS: T1 , T2 , and diffusion contrast of MP-SSFP was simulated with constant and alternate radiofrequency (RF) phase using an extended phase graph. To validate MP-SSFP performance in human brain imaging, MP-SSFP was tested with two types of artificially introduced inhomogeneous magnetic fields: (1) a pure linear gradient field, and (2) a pseudo-linear gradient field introduced by mounting a head-gradient set at 36 cm from the magnet isocenter. Image distortion induced by the nonlinear inhomogeneous field was corrected using B0 mapping measured with MP-SSFP. RESULTS: The maximum flip angle in MP-SSFP was limited to ≤10° because of the large range of resonance frequencies in the inhomogeneous magnetic fields tested in this study. Under this flip-angle limitation, MP-SSFP with constant RF phase provided advantages of higher signal-to-noise ratio and insensitivity to B1+ field inhomogeneity as compared with an alternate RF phase. In diffusion simulation, the steady-state magnetization in constant RF phase MP-SSFP increased with an increase of static field gradient up to 8 to 21 mT/m depending on simulation parameters. Experimental results at 4T validated these findings. In human brain imaging, MP-SSFP preserved sufficient signal intensities, but images showed severe image distortion from the pseudo-linear inhomogeneous field. However, following distortion correction, good-quality brain images were achieved. CONCLUSION: MP-SSFP appears to be a feasible MRI technique for brain imaging in an inhomogeneous magnetic field.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Ondas de Rádio , Razão Sinal-Ruído
7.
Magn Reson Med ; 85(1): 182-196, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32700791

RESUMO

PURPOSE: Inhomogeneities of the static magnetic B0 field are a major limiting factor in cardiac MRI at ultrahigh field (≥ 7T), as they result in signal loss and image distortions. Different magnetic susceptibilities of the myocardium and surrounding tissue in combination with cardiac motion lead to strong spatio-temporal B0 -field inhomogeneities, and their homogenization (B0 shimming) is a prerequisite. Limitations of state-of-the-art shimming are described, regional B0 variations are measured, and a methodology for spherical harmonics shimming of the B0 field within the human myocardium is proposed. METHODS: The spatial B0 -field distribution in the heart was analyzed as well as temporal B0 -field variations in the myocardium over the cardiac cycle. Different shim region-of-interest selections were compared, and hardware limitations of spherical harmonics B0 shimming were evaluated by calibration-based B0 -field modeling. The role of third-order spherical harmonics terms was analyzed as well as potential benefits from cardiac phase-specific shimming. RESULTS: The strongest B0 -field inhomogeneities were observed in localized spots within the left-ventricular and right-ventricular myocardium and varied between systolic and diastolic cardiac phases. An anatomy-driven shim region-of-interest selection allowed for improved B0 -field homogeneity compared with a standard shim region-of-interest cuboid. Third-order spherical harmonics terms were demonstrated to be beneficial for shimming of these myocardial B0 -field inhomogeneities. Initial results from the in vivo implementation of a potential shim strategy were obtained. Simulated cardiac phase-specific shimming was performed, and a shim term-by-term analysis revealed periodic variations of required currents. CONCLUSION: Challenges in state-of-the-art B0 shimming of the human heart at 7 T were described. Cardiac phase-specific shimming strategies were found to be superior to vendor-supplied shimming.


Assuntos
Coração , Processamento de Imagem Assistida por Computador , Calibragem , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
8.
NMR Biomed ; 34(7): e4521, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33876459

RESUMO

Due to inherent time constraints for in vivo experiments, it is infeasible to repeat multiple MRS scans to estimate standard deviations on the desired measured parameters. As such, the Cramér-Rao lower bounds (CRLBs) have become the routine method to approximate standard deviations for in vivo experiments. Cramér-Rao lower bounds, however, as the name suggests, are theoretically a lower bound on the standard deviation and it is not clear if and under what circumstances this approximation is valid. Realistic synthetic 3 T spectra were used to investigate the relationship between estimated CRLBs, true CRLBs and standard deviations. Here we demonstrate that, although the CRLBs are theoretically truly a lower bound on the standard deviation (not an equality) for the problem typically encountered in quantification, they are still an adequate approximation to standard deviation as long as the model perfectly characterizes the data. In the case when the macromolecule basis deviates from the measured macromolecules it was shown that the CRLBs can deviate from standard deviations by approximately 50% for N-acetylaspartic acid, creatine and glutamate and of the order of 100% or more for myo-inositol and γ-aminobutyric acid. In the case when the model perfectly reflects the data the CRLBs are within approximately 10% of standard deviations for all metabolites. The result of the CRLB being within 10% of standard deviations means that, for an accurate model, novel quantification methods such as machine learning or deep learning will not be able to obtain substantially more precise estimates for the desired parameters than traditional maximum-likelihood estimation.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética , Simulação por Computador , Humanos , Modelos Lineares , Método de Monte Carlo
9.
NMR Biomed ; 34(6): e4486, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33599026

RESUMO

Fast, automatic shimming by mapping along projections (FASTMAP) is an elegant analytical method developed to quantify three-dimensional first- and second-order spherical harmonic B0 shapes along six one-dimensional column projections. The straightforward application of this theoretical concept to B0 shimming, however, neglects crucial aspects of sequence implementation and shim hardware, commonly necessitating multistep iterative adjustments. We demonstrate a software package, referred to as FASTMAP Shim Tool (FAMASITO), which is composed of a FASTMAP pulse sequence, automated calibration and analysis routines, and a script for automatically performing experiments. With FAMASITO we demonstrate optimal single-step adjustment of first- and second-order terms (with potential <1% mean refinement of linear terms) in the prefrontal cortex of seven volunteers, one of the most difficult-to-shim areas in the adult human brain.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Automação , Calibragem , Humanos , Interface Usuário-Computador
10.
NMR Biomed ; 34(5): e4129, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31313877

RESUMO

The aim of this study was to develop a novel software platform for the simulation of magnetic resonance spin systems, capable of simulating a large number of spatial points (1283 ) for large in vivo spin systems (up to seven coupled spins) in a time frame of the order of a few minutes. The quantum mechanical density-matrix formalism is applied, a coherence pathway filter is utilized for handling unwanted coherence pathways, and the 1D projection method, which provides a substantial reduction in computation time for a large number of spatial points, is extended to include sequences of an arbitrary number of RF pulses. The novel software package, written in MATLAB, computes a basis set of 23 different metabolites (including the two anomers of glucose, seven coupled spins) with 1283 spatial points in 26 min for a three-pulse experiment on a personal desktop computer. The simulated spectra are experimentally verified with data from both phantom and in vivo MEGA-sLASER experiments. Recommendations are provided regarding the various assumptions made when computing a basis set for in vivo MRS with respect to the number of spatial points simulated and the consideration of relaxation.


Assuntos
Simulação por Computador , Espectroscopia de Ressonância Magnética , Software , Adulto , Algoritmos , Creatinina/análise , Humanos , Ácido Láctico/análise , Reprodutibilidade dos Testes , Fatores de Tempo , Ácido gama-Aminobutírico/análise
11.
NMR Biomed ; 34(5): e4257, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084297

RESUMO

Once an MRS dataset has been acquired, several important steps must be taken to obtain the desired metabolite concentration measures. First, the data must be preprocessed to prepare them for analysis. Next, the intensity of the metabolite signal(s) of interest must be estimated. Finally, the measured metabolite signal intensities must be converted into scaled concentration units employing a quantitative reference signal to allow meaningful interpretation. In this paper, we review these three main steps in the post-acquisition workflow of a single-voxel MRS experiment (preprocessing, analysis and quantification) and provide recommendations for best practices at each step.


Assuntos
Consenso , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Prova Pericial , Humanos , Substâncias Macromoleculares/análise , Processamento de Sinais Assistido por Computador
12.
NMR Biomed ; 34(11): e4590, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34318959

RESUMO

The pathophysiology of progressive multiple sclerosis remains elusive, significantly limiting available disease-modifying therapies. Proton MRS (1 H-MRS) enables in vivo measurement of small molecules implicated in multiple sclerosis, but its application to key metabolites glutamate, γ-aminobutyric acid (GABA), and glutathione has been sparse. We employed, at 7 T, a previously validated 1 H-MRS protocol to measure glutamate, GABA, and glutathione, as well as glutamine, N-acetyl aspartate, choline, and myoinositol, in the frontal cortex of individuals with relapsing-remitting (N = 26) or progressive (N = 21) multiple sclerosis or healthy control adults (N = 25) in a cross-sectional analysis. Only individuals with progressive multiple sclerosis demonstrated reduced glutamate (F2,65 = 3.424, p = 0.04; 12.40 ± 0.62 mM versus control 13.17 ± 0.95 mM, p = 0.03) but not glutamine (F2,65 = 0.352, p = 0.7; 4.71 ± 0.35 mM versus control 4.84 ± 0.42 mM), reduced GABA (F2,65 = 3.89, p = 0.03; 1.29 ± 0.23 mM versus control 1.47 ± 0.25 mM, p = 0.05), and possibly reduced glutathione (F2,65 = 0.352, p = 0.056; 2.23 ± 0.46 mM versus control 2.51 ± 0.48 mM, p < 0.1). As a group, multiple sclerosis patients demonstrated significant negative correlations between disease duration and glutamate or GABA (ρ = -0.4, p = 0.02) but not glutamine or glutathione. Alone, only relapsing-remitting multiple sclerosis patients exhibited a significant negative correlation between disease duration and GABA (ρ = -0.5, p = 0.03). Taken together, these results indicate that frontal cortex metabolism is differentially disturbed in progressive and relapsing-remitting multiple sclerosis.


Assuntos
Lobo Frontal/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Adulto , Idoso , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Feminino , Glutamina/metabolismo , Glutationa/metabolismo , Substância Cinzenta/metabolismo , Humanos , Inositol/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Metaboloma , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Neurotransmissores/metabolismo , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
13.
NMR Biomed ; 34(8): e4538, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33956374

RESUMO

The hippocampus is one of the most challenging brain regions for proton MR spectroscopy (MRS) applications. Moreover, quantification of J-coupled species such as myo-inositol (m-Ins) and glutamate + glutamine (Glx) is affected by the presence of macromolecular background. While long echo time (TE) MRS eliminates the macromolecules, it also decreases the m-Ins and Glx signal and, as a result, these metabolites are studied mainly with short TE. Here, we investigate the feasibility of reproducibly measuring their concentrations at a long TE of 120 ms, using a semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence, as this sequence was recently recommended as a standard for clinical MRS. Gradient offset-independent adiabatic refocusing pulses were implemented, and an optimal long TE for the detection of m-Ins and Glx was determined using the T2 relaxation times of macromolecules. Metabolite concentrations and their coefficients of variation (CVs) were obtained for a 3.4-mL voxel centered on the left hippocampus on 3-T MR systems at two different sites with three healthy subjects (aged 32.5 ± 10.2 years [mean ± standard deviation]) per site, with each subject scanned over two sessions, and with each session comprising three scans. Concentrations of m-Ins, choline, creatine, Glx and N-acetyl-aspartate were 5.4 ± 1.5, 1.7 ± 0.2, 5.8 ± 0.3, 11.6 ± 1.2 and 5.9 ± 0.4 mM (mean ± standard deviation), respectively. Their respective mean within-session CVs were 14.5% ± 5.9%, 6.5% ± 5.3%, 6.0% ± 3.4%, 10.6% ± 6.2% and 3.5% ± 1.4%, and their mean within-subject CVs were 17.8% ± 18.2%, 7.5% ± 6.3%, 7.4% ± 6.4%, 12.4% ± 5.3% and 4.8% ± 3.0%. The between-subject CVs were 25.0%, 12.3%, 5.3%, 10.7% and 6.4%, respectively. Hippocampal long-TE sLASER single voxel spectroscopy can provide macromolecule-independent assessment of all major metabolites including Glx and m-Ins.


Assuntos
Algoritmos , Hipocampo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Metaboloma , Fatores de Tempo
14.
NMR Biomed ; 34(5): e4350, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32596978

RESUMO

Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) allow the chemical analysis of physiological processes in vivo and provide powerful tools in the life sciences and for clinical diagnostics. Excellent homogeneity of the static B0 magnetic field over the object of interest is essential for achieving high-quality spectral results and quantitative metabolic measurements. The experimental minimization of B0 variation is performed in a process called B0 shimming. In this article, we summarize the concepts of B0 field shimming using spherical harmonic shimming techniques, specific strategies for B0 homogenization and crucial factors to consider for implementation and use in both brain and body. In addition, experts' recommendations are provided for minimum requirements for B0 shim hardware and evaluation criteria for the primary outcome of adequate B0 shimming for MRS and MRSI, such as the water spectroscopic linewidth.


Assuntos
Consenso , Imageamento por Ressonância Magnética , Animais , Calibragem , Simulação por Computador , Prova Pericial , Humanos , Campos Magnéticos , Processamento de Sinais Assistido por Computador
15.
NMR Biomed ; 34(5): e4218, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31854045

RESUMO

The semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high- and ultra-high fields. Across-vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B1 requirements of the adiabatic inversion pulses and maximum B1 limitations on some platforms. The aims of this study were to design a short-echo sLASER sequence that can be executed within a B1 limit of 15 µT by taking advantage of gradient-modulated RF pulses, to implement it on three major platforms and to evaluate the between-vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel-based first and second order B0 shimming and voxel-based B1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient-modulated pulses considered (GOIA, FOCI and BASSI), GOIA-WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B1 of 15 µT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter-pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE 'Braino' phantom between vendors. High-quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal-to-noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi-site studies with clinical cohorts.


Assuntos
Lasers , Imageamento por Ressonância Magnética/normas , Adulto , Simulação por Computador , Creatinina/metabolismo , Humanos , Metaboloma , Imagens de Fantasmas , Ondas de Rádio , Padrões de Referência , Razão Sinal-Ruído
16.
NMR Biomed ; 34(5): e4484, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33559967

RESUMO

The translation of MRS to clinical practice has been impeded by the lack of technical standardization. There are multiple methods of acquisition, post-processing, and analysis whose details greatly impact the interpretation of the results. These details are often not fully reported, making it difficult to assess MRS studies on a standardized basis. This hampers the reviewing of manuscripts, limits the reproducibility of study results, and complicates meta-analysis of the literature. In this paper a consensus group of MRS experts provides minimum guidelines for the reporting of MRS methods and results, including the standardized description of MRS hardware, data acquisition, analysis, and quality assessment. This consensus statement describes each of these requirements in detail and includes a checklist to assist authors and journal reviewers and to provide a practical way for journal editors to ensure that MRS studies are reported in full.


Assuntos
Consenso , Espectroscopia de Ressonância Magnética , Relatório de Pesquisa/normas , Prova Pericial , Humanos , Software
17.
NMR Biomed ; 34(5): e4393, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33236818

RESUMO

Proton MR spectra of the brain, especially those measured at short and intermediate echo times, contain signals from mobile macromolecules (MM). A description of the main MM is provided in this consensus paper. These broad peaks of MM underlie the narrower peaks of metabolites and often complicate their quantification but they also may have potential importance as biomarkers in specific diseases. Thus, separation of broad MM signals from low molecular weight metabolites enables accurate determination of metabolite concentrations and is of primary interest in many studies. Other studies attempt to understand the origin of the MM spectrum, to decompose it into individual spectral regions or peaks and to use the components of the MM spectrum as markers of various physiological or pathological conditions in biomedical research or clinical practice. The aim of this consensus paper is to provide an overview and some recommendations on how to handle the MM signals in different types of studies together with a list of open issues in the field, which are all summarized at the end of the paper.


Assuntos
Encéfalo/diagnóstico por imagem , Consenso , Prova Pericial , Substâncias Macromoleculares/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Lipídeos/química , Imageamento por Ressonância Magnética , Metaboloma , Pessoa de Meia-Idade , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Adulto Jovem
18.
Magn Reson Med ; 83(2): 391-402, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31529647

RESUMO

PURPOSE: To extend the dephasing optimization through coherence order pathway selection (DOTCOPS) algorithm, originally designed solely for gradient crusher schemes, to include tailored phase cycling schemes for arbitrary pulse sequences and arbitrary number of coupled spins. THEORY AND METHODS: The effects all possible nested and cogwheel phase cycling schemes have on the coherence order pathways for an arbitrary experiment are considered. The DOTCOPS algorithm uses a cost function to maximally eliminate unwanted coherence pathways, with schemes preferentially eliminating unwanted coherence pathways that are less affected by the crusher scheme. Efficacy was demonstrated experimentally in 2 separate MR spectroscopy (MRS) sequences: semi-localized adiabatic selective refocusing (sLASER) and MEscher-GArwood sLASER both with phantom and in vivo experiments. RESULTS: For all sequences investigated, cogwheel was found to theoretically outperform typical nested phase cycling schemes. The chosen cogwheel phase cycling schemes through DOTCOPS were found to outperform a typical 2-step phase cycling scheme in both phantom and in vivo experiments. Both crusher schemes and phase cycling schemes with 8, 16, or 32 steps are presented for 6 of the most common advanced MRS sequences. CONCLUSION: The DOTCOPS algorithm has been extended to provide optimal crusher and phase cycling schemes considered in tandem. DOTCOPS can be applied to any pulse sequence of interest for any number of coupled spins. DOTCOPS is now able to alleviate the long-standing issue of designing effective crusher and phase cycling schemes for complex MRS modern sequences and, as a result, is expected to improve the data quality of virtually all applications.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Algoritmos , Artefatos , Voluntários Saudáveis , Humanos , Masculino , Modelos Estatísticos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador
19.
Magn Reson Med ; 84(5): 2327-2337, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32430928

RESUMO

PURPOSE: We aimed to investigate the concentration and effective T2 relaxation time of macromolecules assessed with an ultra-short TE sLASER sequence in 2 brain regions, the occipital and frontal cortex, in both genders at 3T. METHODS: An optimized sLASER sequence was used in conjunction with a double-inversion preparation module to null the metabolites. Eight equally spaced TEs were chosen from 20.1 to 62.1 ms, and the macromolecules were modeled by 10 line broadened singlets. The amplitude of each of the macromolecule signals was extracted at each TE and fit to a monoexponential function to extract the respective effective T2 values. Absolute quantification of the macromolecule resonances was performed using water signal as a reference. A total of 10 young healthy adult subjects (5 females) were scanned, with spectra being obtained from both the frontal and occipital cortex. Differences in the effective T2 relaxation times and concentrations were investigated between both regions and genders. RESULTS: A wide disparity was observed between the effective T2 values of the individual resonances; however, no significant differences between gender or region for any of the measured macromolecule concentration or effective T2 values were found. CONCLUSION: The effective T2 relaxation times and concentration of 10 different macromolecule resonances were measured and found to be well represented by the monoexponential model. These results will be useful for absolute quantification of macromolecules in future studies, or in the generation of synthetic basis sets for optimization or machine learning.


Assuntos
Encéfalo , Lobo Occipital , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Substâncias Macromoleculares , Imageamento por Ressonância Magnética , Masculino , Lobo Occipital/diagnóstico por imagem , Fatores de Tempo , Água
20.
Magn Reson Med ; 84(6): 2953-2963, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32544274

RESUMO

PURPOSE: Spatial encoding for MRI is generally based on linear x, y, and z magnetic field gradients generated by a set of dedicated gradient coils. We recently introduced the dynamic multicoil technique (DYNAMITE) for B0 field control and demonstrated DYNAMITE MRI in a preclinical MR environment. In this study, we report the first realization of DYNAMITE MRI of the in vivo human head. METHODS: Gradient fields for DYNAMITE MRI were generated with a 28-channel multicoil hardware arranged in 4 rows of 7 coils on a cylindrical surface (length 359 mm, diameter 344 mm, maximum 5 A per coil). DYNAMITE MRIs of a resolution phantom and in vivo human heads were acquired with multislice gradient-echo, multislice spin-echo, and 3D gradient-echo sequences. The resultant image fidelity was compared to that obtained with conventional gradient coil technology. RESULTS: DYNAMITE field control enabled the realization of all imaging sequences with average gradient errors ≤ 1%. DYNAMITE MRI provided image quality and sensitivity comparable to conventional gradient technology without any obvious artifacts. Some minor geometric deformations were noticed primarily in the image periphery as the result of regional field imperfections. The imperfections can be readily approximated theoretically through numerical integration of the Biot-Savart law and removed through image distortion correction. CONCLUSION: The first realization of DYNAMITE MRI of the in vivo human head has been presented. The obtained image fidelity is comparable to MRI with conventional gradient coils, paving the way for full-fledged DYNAMITE MRI and B0 shim systems for human applications.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Campos Magnéticos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA