Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2310740121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408233

RESUMO

Autophagy is essential for the turnover of damaged organelles and long-lived proteins. It is responsible for many biological processes such as maintaining brain functions and aging. Impaired autophagy is often linked to neurodevelopmental and neurodegenerative diseases in humans. However, the role of autophagy in neuronal pruning during development remains poorly understood. Here, we report that autophagy regulates dendrite-specific pruning of ddaC sensory neurons in parallel to local caspase activation. Impaired autophagy causes the formation of ubiquitinated protein aggregates in ddaC neurons, dependent on the autophagic receptor Ref(2)P. Furthermore, the metabolic regulator AMP-activated protein kinase and the insulin-target of rapamycin pathway act upstream to regulate autophagy during dendrite pruning. Importantly, autophagy is required to activate the transcription factor CncC (Cap "n" collar isoform C), thereby promoting dendrite pruning. Conversely, CncC also indirectly affects autophagic activity via proteasomal degradation, as impaired CncC results in the inhibition of autophagy through sequestration of Atg8a into ubiquitinated protein aggregates. Thus, this study demonstrates the important role of autophagy in activating CncC prior to dendrite pruning, and further reveals an interplay between autophagy and CncC in neuronal pruning.


Assuntos
Proteínas de Drosophila , Drosophila , Compostos de Amônio Quaternário , Animais , Humanos , Autofagia/fisiologia , Dendritos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Plasticidade Neuronal , Proteínas Ubiquitinadas/metabolismo
2.
J Biol Chem ; : 107911, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39433126

RESUMO

The lysosomal cation channel TRPML1/MCOLN1 facilitates autophagic degradation during amino acid starvation based on studies involving long-term TRMPL1 modulation. Here we show that lysosomal activation (more acidic pH and higher hydrolase activity) depends on incoming vesicle fusions. We identify an immediate, calcium-dependent role of TRPML1 in lysosomal activation through promoting autophagosome-lysosome fusions and lysosome acidification within 10-20 minutes of its pharmacological activation. Lysosomes also become more fusion competent upon TRPML1 activation via increased transport of lysosomal SNARE proteins syntaxin 7 and VAMP7 by SNARE carrier vesicles. We find that incoming vesicle fusion is a prerequisite for lysosomal Ca2+ efflux that leads to acidification and hydrolytic enzyme activation. Physiologically, the first vesicle fusions likely trigger generation of the phospholipid PI(3,5)P2 that activates TRPML1, and allosteric TRPML1 activation in the absence of PI(3,5)P2 restores autophagosome-lysosome fusion and rescues abnormal SNARE sequestration within lysosomes. We thus identify a prompt role of TRPML1-mediated calcium signaling in lysosomal fusions, activation, and SNARE trafficking.

3.
EMBO J ; 40(19): e108863, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459017

RESUMO

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Assuntos
Autofagia , Suscetibilidade a Doenças , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Biomarcadores , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Especificidade de Órgãos , Transdução de Sinais
4.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37092295

RESUMO

In specialized secretory cells that produce and release biologically active substances in a regulated fashion, tight control of both the quantity and quality of secretory material is of paramount importance. During crinophagy, abnormal, excess or obsolete secretory granules directly fuse with lysosomes to yield crinosomes, in which the delivered secretory material is degraded. Crinophagy maintains the proper intracellular pool of secretory granules, and it is enhanced when secretory material accumulates because of compromised secretion. Recent studies highlight that it can even degrade newly formed, nascent secretory granules that shed from the trans-Golgi network. This implies that crinophagy provides a quality control checkpoint acting at the formation of secretory vesicles, and this degradation mechanism might survey secretory granules throughout their maturation. Of note, a plethora of human disorders is associated with defective lysosomal clearance of secretory material via crinophagy or similar pathways, including macro- or micro-autophagic degradation of secretory granules (referred to here as macro- and micro-secretophagy, respectively). In our Review, we summarize key recent advances in this field and discuss potential links with disease.


Assuntos
Lisossomos , Via Secretória , Humanos , Lisossomos/metabolismo , Autofagia , Rede trans-Golgi/metabolismo , Vesículas Secretórias/metabolismo
5.
Traffic ; 23(12): 568-586, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36353974

RESUMO

Both constitutive and regulated secretion require cell organelles that are able to store and release the secretory cargo. During development, the larval salivary gland of Drosophila initially produces high amount of glue-containing small immature secretory granules, which then fuse with each other and reach their normal 3-3.5 µm in size. Following the burst of secretion, obsolete glue granules directly fuse with late endosomes or lysosomes by a process called crinophagy, which leads to fast degradation and recycling of the secretory cargo. However, hindering of endosome-to-TGN retrograde transport in these cells causes abnormally small glue granules which are not able to fuse with each other. Here, we show that loss of function of the SNARE genes Syntaxin 16 (Syx16) and Synaptobrevin (Syb), the small GTPase Rab6 and the GARP tethering complex members Vps53 and Scattered (Vps54) all involved in retrograde transport cause intense early degradation of immature glue granules via crinophagy independently of the developmental program. Moreover, silencing of these genes also provokes secretory failure and accelerated crinophagy during larval development. Our results provide a better understanding of the relations among secretion, secretory granule maturation and degradation and paves the way for further investigation of these connections in other metazoans.


Assuntos
Drosophila , Vesículas Secretórias , Animais , Larva , Vesículas Secretórias/metabolismo , Complexo de Golgi/metabolismo , Glândulas Salivares/metabolismo
6.
Cell Mol Life Sci ; 80(1): 24, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600084

RESUMO

At the onset of Drosophila metamorphosis, plenty of secretory glue granules are released from salivary gland cells and the glue is deposited on the ventral side of the forming (pre)pupa to attach it to a dry surface. Prior to this, a poorly understood maturation process takes place during which secretory granules gradually grow via homotypic fusions, and their contents are reorganized. Here we show that the small GTPase Rab26 localizes to immature (smaller, non-acidic) glue granules and its presence prevents vesicle acidification. Rab26 mutation accelerates the maturation, acidification and release of these secretory vesicles as well as the lysosomal breakdown (crinophagy) of residual, non-released glue granules. Strikingly, loss of Mon1, an activator of the late endosomal and lysosomal fusion factor Rab7, results in Rab26 remaining associated even with the large glue granules and a concomitant defect in glue release, similar to the effects of Rab26 overexpression. Our data thus identify Rab26 as a key regulator of secretory vesicle maturation that promotes early steps (vesicle growth) and inhibits later steps (lysosomal transport, acidification, content reorganization, release, and breakdown), which is counteracted by Mon1.


Assuntos
Drosophila , Vesículas Secretórias , Proteínas rab de Ligação ao GTP , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Lisossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Glândulas Salivares/metabolismo , Vesículas Secretórias/metabolismo
7.
PLoS Genet ; 17(8): e1009731, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383748

RESUMO

A healthy population of mitochondria, maintained by proper fission, fusion, and degradation, is critical for the long-term survival and function of neurons. Here, our discovery of mitophagy intermediates in fission-impaired Drosophila neurons brings new perspective into the relationship between mitochondrial fission and mitophagy. Neurons lacking either the ataxia disease gene Vps13D or the dynamin related protein Drp1 contain enlarged mitochondria that are engaged with autophagy machinery and also lack matrix components. Reporter assays combined with genetic studies imply that mitophagy both initiates and is completed in Drp1 impaired neurons, but fails to complete in Vps13D impaired neurons, which accumulate compromised mitochondria within stalled mito-phagophores. Our findings imply that in fission-defective neurons, mitophagy becomes induced, and that the lipid channel containing protein Vps13D has separable functions in mitochondrial fission and phagophore elongation.


Assuntos
Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dinâmica Mitocondrial/fisiologia , Neurônios/metabolismo , Animais , Autofagia , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Dinaminas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Mitofagia/genética , Mitofagia/fisiologia , Neurônios/fisiologia , Ubiquitina-Proteína Ligases/genética
8.
Cell Mol Neurobiol ; 43(7): 3099-3113, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37219664

RESUMO

STEP (STriatal-Enriched Protein Tyrosine Phosphatase) is a brain-specific phosphatase that plays an important role in controlling signaling molecules involved in neuronal activity and synaptic development. The striatum is the main location of the STEP enzyme. An imbalance in STEP61 activity is a risk factor for Alzheimer's disease (AD). It can contribute to the development of numerous neuropsychiatric diseases, including Parkinson's disease (PD), schizophrenia, fragile X syndrome (FXS), Huntington's disease (HD), alcoholism, cerebral ischemia, and stress-related diseases. The molecular structure, chemistry, and molecular mechanisms associated with STEP61's two major substrates, Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAr) and N-methyl-D-aspartate receptors (NMDARs), are crucial in understanding the relationship between STEP61 and associated illnesses. STEP's interactions with its substrate proteins can alter the pathways of long-term potentiation and long-term depression. Therefore, understanding the role of STEP61 in neurological illnesses, particularly Alzheimer's disease-associated dementia, can provide valuable insights for possible therapeutic interventions. This review provides valuable insights into the molecular structure, chemistry, and molecular mechanisms associated with STEP61. This brain-specific phosphatase controls signaling molecules involved in neuronal activity and synaptic development. This review can aid researchers in gaining deep insights into the complex functions of STEP61.


Assuntos
Doença de Alzheimer , Humanos , Transdução de Sinais/fisiologia , Plasticidade Neuronal , Potenciação de Longa Duração , Monoéster Fosfórico Hidrolases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Nature ; 541(7637): 417-420, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28077876

RESUMO

As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy in vivo and whether autophagy affects tumour growth is controversial. Here we demonstrate, using a well characterized Drosophila melanogaster malignant tumour model, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by Drosophila tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.


Assuntos
Autofagia , Drosophila melanogaster/citologia , Modelos Biológicos , Neoplasias/patologia , Microambiente Tumoral , Aminoácidos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Transporte Biológico , Proliferação de Células , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Feminino , Interleucina-6/metabolismo , Proteínas de Membrana , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
10.
Cell Mol Life Sci ; 79(9): 471, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35932293

RESUMO

In synapses that show signs of local apoptosis and mitochondrial stress and undergo neuro-immunological synapse pruning, an increase in the levels of the presynaptic protein, neuronal-specific septin-3 can be observed. Septin-3 is a member of the septin GTPase family with the ability to form multimers and contribute to the cytoskeleton. However, the function of septin-3 remains elusive. Here, we provide evidence that septin-3 is capable of binding the most-studied autophagy protein Atg8 homolog microtubule-associated protein 1 light chain 3B (LC3B), besides another homolog, GABA receptor-associated protein-like 2 (GABARAPL2). Moreover, we demonstrate that colocalization of septin-3 and LC3B increases upon chemical autophagy induction in primary neuronal cells. Septin-3 is accumulated in primary neurons upon autophagy enhancement or blockade, similar to autophagy proteins. Using electron microscopy, we also show that septin-3 localizes to LC3B positive membranes and can be found at mitochondria. However, colocalization results of septin-3 and the early mitophagy marker PTEN-induced kinase 1 (PINK1) do not support that binding of septin-3 to mitochondria is mitophagy related. We conclude that septin-3 correlates with synaptic/neuronal autophagy, binds Atg8 and localizes to autophagic membranes that can be enhanced with chemical autophagy induction. Based on our results, elevated septin-3 levels might indicate enhanced or impeded autophagy in neurons.


Assuntos
Autofagossomos , Septinas , Autofagossomos/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitofagia , Neurônios/metabolismo , Septinas/metabolismo
11.
Cereb Cortex ; 31(2): 731-745, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32710103

RESUMO

The prefrontal cortex (PFC) plays a key role in higher order cognitive functions and psychiatric disorders such as autism, schizophrenia, and depression. In the PFC, the two major classes of neurons are the glutamatergic pyramidal (Pyr) cells and the GABAergic interneurons such as fast-spiking (FS) cells. Despite extensive electrophysiological, morphological, and pharmacological studies of the PFC, the therapeutically utilized drug targets are restricted to dopaminergic, glutamatergic, and GABAergic receptors. To expand the pharmacological possibilities as well as to better understand the cellular and network effects of clinically used drugs, it is important to identify cell-type-selective, druggable cell surface proteins and to link developed drug candidates to Pyr or FS cell targets. To identify the mRNAs of such cell-specific/enriched proteins, we performed ultra-deep single-cell mRNA sequencing (19 685 transcripts in total) on electrophysiologically characterized intact PFC neurons harvested from acute brain slices of mice. Several selectively expressed transcripts were identified with some of the genes that have already been associated with cellular mechanisms of psychiatric diseases, which we can now assign to Pyr (e.g., Kcnn2, Gria3) or FS (e.g., Kcnk2, Kcnmb1) cells. The earlier classification of PFC neurons was also confirmed at mRNA level, and additional markers have been provided.


Assuntos
Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Células Piramidais/fisiologia , RNA Mensageiro/metabolismo , Transcrição Gênica/genética , Animais , Fenômenos Eletrofisiológicos , Marcadores Genéticos , Proteínas de Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Células Piramidais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
12.
PLoS Genet ; 15(2): e1007987, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30802236

RESUMO

Drosophila melanogaster sperm reach an extraordinary long size, 1.8 mm, by the end of spermatogenesis. The mitochondrial derivatives run along the entire flagellum and provide structural rigidity for flagellar movement, but its precise function and organization is incompletely understood. The two mitochondrial derivatives differentiate and by the end of spermatogenesis the minor one reduces its size and the major one accumulates paracrystalline material inside it. The molecular constituents and precise function of the paracrystalline material have not yet been revealed. Here we purified the paracrystalline material from mature sperm and identified by mass spectrometry Sperm-Leucylaminopeptidase (S-Lap) family members as important constituents of it. To study the function of S-Lap proteins we show the characterization of classical mutants and RNAi lines affecting of the S-Lap genes and the analysis of their mutant phenotypes. We show that the male sterile phenotype of the S-Lap mutants is caused by defects in paracrystalline material accumulation and abnormal structure of the elongated major mitochondrial derivatives. Our work shows that S-Lap proteins localize and accumulate in the paracrystalline material of the major mitochondrial derivative. Therefore, we propose that S-Lap proteins are important constituents of the paracrystalline material of Drosophila melanogaster sperm.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Leucil Aminopeptidase/metabolismo , Espermatozoides/enzimologia , Animais , Animais Geneticamente Modificados , Cristalização , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Fertilidade/genética , Fertilidade/fisiologia , Genes de Insetos , Infertilidade Masculina/enzimologia , Infertilidade Masculina/genética , Leucil Aminopeptidase/química , Leucil Aminopeptidase/genética , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/química , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Mutação , Interferência de RNA , Espermatogênese/genética , Espermatogênese/fisiologia , Espermatozoides/fisiologia , Espermatozoides/ultraestrutura
13.
EMBO J ; 36(13): 1811-1836, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28596378

RESUMO

Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.


Assuntos
Autofagia , Terminologia como Assunto , Animais , Caenorhabditis elegans/fisiologia , Drosophila melanogaster/fisiologia , Redes Reguladoras de Genes , Camundongos , Saccharomyces cerevisiae/fisiologia
14.
Cell Mol Life Sci ; 77(24): 5243-5258, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32034429

RESUMO

Synaptic functional disturbances with concomitant synapse loss represent central pathological hallmarks of Alzheimer's disease. Excessive accumulation of cytotoxic amyloid oligomers is widely recognized as a key event that underlies neurodegeneration. Certain complement components are crucial instruments of widespread synapse loss because they can tag synapses with functional impairments leading to their engulfment by microglia. However, an exact understanding of the affected synaptic functions that predispose to complement-mediated synapse elimination is lacking. Therefore, we conducted systematic proteomic examinations on synaptosomes prepared from an amyloidogenic mouse model of Alzheimer's disease (APP/PS1). Synaptic fractions were separated according to the presence of the C1q-tag using fluorescence-activated synaptosome sorting and subjected to proteomic comparisons. The results raised the decline of mitochondrial functions in the C1q-tagged synapses of APP/PS1 mice based on enrichment analyses, which was verified using flow cytometry. Additionally, proteomics results revealed extensive alterations in the level of septin protein family members, which are known to dynamically form highly organized pre- and postsynaptic supramolecular structures, thereby affecting synaptic transmission. High-resolution microscopy investigations demonstrated that synapses with considerable amounts of septin-3 and septin-5 show increased accumulation of C1q in APP/PS1 mice compared to the wild-type ones. Moreover, a strong positive correlation was apparent between synaptic septin-3 levels and C1q deposition as revealed via flow cytometry and confocal microscopy examinations. In sum, our results imply that deterioration of synaptic mitochondrial functions and alterations in the organization of synaptic septins are associated with complement-dependent synapse loss in Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Amiloide/metabolismo , Proteoma/genética , Sinapses/genética , Doença de Alzheimer/patologia , Amiloide/toxicidade , Proteínas Amiloidogênicas/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Oligopeptídeos/genética , Placa Amiloide/genética , Placa Amiloide/patologia , Septinas/genética , Sinapses/metabolismo , Sinapses/patologia , Sinaptossomos/metabolismo , Sinaptossomos/patologia
15.
PLoS Genet ; 14(4): e1007359, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29694367

RESUMO

The autophagosomal SNARE Syntaxin17 (Syx17) forms a complex with Snap29 and Vamp7/8 to promote autophagosome-lysosome fusion via multiple interactions with the tethering complex HOPS. Here we demonstrate that, unexpectedly, one more SNARE (Ykt6) is also required for autophagosome clearance in Drosophila. We find that loss of Ykt6 leads to large-scale accumulation of autophagosomes that are unable to fuse with lysosomes to form autolysosomes. Of note, loss of Syx5, the partner of Ykt6 in ER-Golgi trafficking does not prevent autolysosome formation, pointing to a more direct role of Ykt6 in fusion. Indeed, Ykt6 localizes to lysosomes and autolysosomes, and forms a SNARE complex with Syx17 and Snap29. Interestingly, Ykt6 can be outcompeted from this SNARE complex by Vamp7, and we demonstrate that overexpression of Vamp7 rescues the fusion defect of ykt6 loss of function cells. Finally, a point mutant form with an RQ amino acid change in the zero ionic layer of Ykt6 protein that is thought to be important for fusion-competent SNARE complex assembly retains normal autophagic activity and restores full viability in mutant animals, unlike palmitoylation or farnesylation site mutant Ykt6 forms. As Ykt6 and Vamp7 are both required for autophagosome-lysosome fusion and are mutually exclusive subunits in a Syx17-Snap29 complex, these data suggest that Vamp7 is directly involved in membrane fusion and Ykt6 acts as a non-conventional, regulatory SNARE in this process.


Assuntos
Autofagossomos/fisiologia , Proteínas de Drosophila/fisiologia , Lisossomos/fisiologia , Fusão de Membrana/fisiologia , Proteínas R-SNARE/fisiologia , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Fusão de Membrana/genética , Modelos Biológicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/fisiologia , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/fisiologia , Proteínas R-SNARE/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/fisiologia
16.
Proc Natl Acad Sci U S A ; 115(24): 6303-6308, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844190

RESUMO

C1q, a member of the immune complement cascade, is implicated in the selective pruning of synapses by microglial phagocytosis. C1q-mediated synapse elimination has been shown to occur during brain development, while increased activation and complement-dependent synapse loss is observed in neurodegenerative diseases. However, the molecular mechanisms underlying C1q-controlled synaptic pruning are mostly unknown. This study addresses distortions in the synaptic proteome leading to C1q-tagged synapses. Our data demonstrated the preferential localization of C1q to the presynapse. Proteomic investigation and pathway analysis of C1q-tagged synaptosomes revealed the presence of apoptotic-like processes in C1q-tagged synapses, which was confirmed experimentally with apoptosis markers. Moreover, the induction of synaptic apoptotic-like mechanisms in a model of sensory deprivation-induced synaptic depression led to elevated C1q levels. Our results unveiled that C1q label-based synaptic pruning is triggered by and directly linked to apoptotic-like processes in the synaptic compartment.


Assuntos
Apoptose/fisiologia , Complemento C1q/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Idoso , Ativação do Complemento/fisiologia , Humanos , Masculino , Microglia/metabolismo , Microglia/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Fagocitose/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Sinapses/metabolismo
17.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638976

RESUMO

Lysosomal degradation, the common destination of autophagy and endocytosis, is one of the most important elements of eukaryotic metabolism. The small GTPases Rab39A and B are potential new effectors of this pathway, as their malfunction is implicated in severe human diseases like cancer and neurodegeneration. In this study, the lysosomal regulatory role of the single Drosophila Rab39 ortholog was characterized, providing valuable insight into the potential cell biological mechanisms mediated by these proteins. Using a de novo CRISPR-generated rab39 mutant, we found no failure in the early steps of endocytosis and autophagy. On the contrary, we found that Rab39 mutant nephrocytes internalize and degrade endocytic cargo at a higher rate compared to control cells. In addition, Rab39 mutant fat body cells contain small yet functional autolysosomes without lysosomal fusion defect. Our data identify Drosophila Rab39 as a negative regulator of lysosomal clearance during both endocytosis and autophagy.


Assuntos
Autofagia/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Endocitose/genética , Lisossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Larva/enzimologia , Larva/genética , Fenótipo , Proteínas rab de Ligação ao GTP/genética
18.
Development ; 144(21): 3990-4001, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982685

RESUMO

Genetic variations of Atg16l1, Slit2 and Rab19 predispose to the development of inflammatory bowel disease (IBD), but the relationship between these mutations is unclear. Here we show that in Drosophila guts lacking the WD40 domain of Atg16, pre-enteroendocrine (pre-EE) cells accumulate that fail to differentiate into properly functioning secretory EE cells. Mechanistically, loss of Atg16 or its binding partner Rab19 impairs Slit production, which normally inhibits EE cell generation by activating Robo signaling in stem cells. Importantly, loss of Atg16 or decreased Slit/Robo signaling triggers an intestinal inflammatory response. Surprisingly, analysis of Rab19 and domain-specific Atg16 mutants indicates that their stem cell niche regulatory function is independent of autophagy. Our study reveals how mutations in these different genes may contribute to IBD.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Células Enteroendócrinas/citologia , Mucosa Intestinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Animais , Autofagia , Proteínas Relacionadas à Autofagia/química , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Células Enteroendócrinas/metabolismo , Heterozigoto , Homozigoto , Inflamação/patologia , Intestinos/citologia , Modelos Biológicos , Mutação/genética , Domínios Proteicos , Interferência de RNA , Nicho de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Estresse Fisiológico , Proteínas Roundabout
19.
Amino Acids ; 52(11-12): 1529-1543, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33211194

RESUMO

Synaptosomes are frequently used research objects in neurobiology studies focusing on synaptic transmission as they mimic several aspects of the physiological synaptic functions. They contain the whole apparatus for neurotransmission, the presynaptic nerve ending with synaptic vesicles, synaptic mitochondria and often a segment of the postsynaptic membrane along with the postsynaptic density is attached to its outer surface. As being artificial functional organelles, synaptosomes are viable for several hours, retain their activity, membrane potential, and capable to store, release, and reuptake neurotransmitters. Synaptosomes are ideal subjects for proteomic analysis. The recently available separation and protein detection techniques can cope with the reduced complexity of the organelle and enable the simultaneous qualitative and quantitative analysis of thousands of proteins shaping the structural and functional characteristics of the synapse. Synaptosomes are formed during the homogenization of nervous tissue in the isoosmotic milieu and can be isolated from the homogenate by various approaches. Each enrichment method has its own benefits and drawbacks and there is not a single method that is optimal for all research purposes. For a proper proteomic experiment, it is desirable to preserve the native synaptic structure during the isolation procedure and keep the degree of contamination from other organelles or cell types as low as possible. In this article, we examined five synaptosome isolation methods from a proteomic point of view by the means of electron microscopy, Western blot, and liquid chromatography-mass spectrometry to compare their efficiency in the isolation of synaptosomes and depletion of contaminating subcellular structures. In our study, the different isolation procedures led to a largely overlapping pool of proteins with a fairly similar distribution of presynaptic, active zone, synaptic vesicle, and postsynaptic proteins; however, discrete differences were noticeable in individual postsynaptic proteins and in the number of identified transmembrane proteins. Much pronounced variance was observed in the degree of contamination with mitochondrial and glial structures. Therefore, we suggest that in selecting the appropriate isolation method for any neuroproteomics experiment carried out on synaptosomes, the degree and sort/source of contamination should be considered as a primary aspect.


Assuntos
Proteínas de Membrana/isolamento & purificação , Proteômica , Sinapses/metabolismo , Sinaptossomos/metabolismo , Animais , Encéfalo/metabolismo , Cromatografia Líquida , Humanos , Espectrometria de Massas , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Microscopia Eletrônica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Sinapses/genética , Transmissão Sináptica/genética
20.
Mol Cell Neurosci ; 79: 64-80, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28087334

RESUMO

Acute total sleep deprivation (SD) impairs memory consolidation, attention, working memory and perception. Structural, electrophysiological and molecular experimental approaches provided evidences for the involvement of sleep in synaptic functions. Despite the wide scientific interest on the effects of sleep on the synapse, there is a lack of systematic investigation of sleep-related changes in the synaptic proteome. We isolated parietal cortical and thalamic synaptosomes of rats after 8h of total SD by gentle handling and 16h after the end of deprivation to investigate the short- and longer-term effects of SD on the synaptic proteome, respectively. The SD efficiency was verified by electrophysiology. Protein abundance alterations of the synaptosomes were analyzed by fluorescent two-dimensional differential gel electrophoresis and by tandem mass spectrometry. As several altered proteins were found to be involved in synaptic strength regulation, our data can support the synaptic homeostasis hypothesis function of sleep and highlight the long-term influence of SD after the recovery sleep period, mostly on cortical synapses. Furthermore, the large-scale and brain area-specific protein network change in the synapses may support both ideas of sleep-related synaptogenesis and molecular maintenance and reorganization in normal rat brain.


Assuntos
Córtex Cerebral/metabolismo , Proteoma/metabolismo , Privação do Sono/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo , Animais , Córtex Cerebral/ultraestrutura , Masculino , Proteoma/genética , Ratos , Ratos Sprague-Dawley , Privação do Sono/patologia , Sinapses/ultraestrutura , Tálamo/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA