RESUMO
BACKGROUND AND OBJECTIVE: Obesity hypoventilation syndrome (OHS) causes hypercapnia which is often refractory to current therapies. We examine whether hypercapnia in OHS can be improved by a ketogenic dietary intervention. METHODS: We conducted a single-arm crossover clinical trial to examine the impact of a ketogenic diet on CO2 levels in patients with OHS. Patients were instructed to adhere to 1 week of regular diet, 2 weeks of ketogenic diet, followed by 1 week of regular diet in an ambulatory setting. Adherence was assessed with capillary ketone levels and continuous glucose monitors. At weekly visits, we measured blood gases, calorimetry, body composition, metabolic profiles, and sleep studies. Outcomes were assessed with linear mixed models. RESULTS: A total of 20 subjects completed the study. Blood ketones increased from 0.14 ± 0.08 during regular diet to 1.99 ± 1.11 mmol/L (p < 0.001) after 2 weeks of ketogenic diet. Ketogenic diet decreased venous CO2 by 3.0 mm Hg (p = 0.008), bicarbonate by 1.8 mmol/L (p = 0.001), and weight by 3.4 kg (p < 0.001). Sleep apnoea severity and nocturnal oxygen levels significantly improved. Ketogenic diet lowered respiratory quotient, fat mass, body water, glucose, insulin, triglycerides, leptin, and insulin-like growth factor 1. Rebound hypercapnia was observed after resuming regular diet. CO2 lowering was dependent on baseline hypercapnia, and associated with circulating ketone levels and respiratory quotient. The ketogenic diet was well tolerated. CONCLUSION: This study demonstrates for the first time that a ketogenic diet may be useful for control of hypercapnia and sleep apnoea in patients with obesity hypoventilation syndrome.
Assuntos
Dieta Cetogênica , Síndrome de Hipoventilação por Obesidade , Síndromes da Apneia do Sono , Humanos , Síndrome de Hipoventilação por Obesidade/terapia , Hipercapnia/etiologia , Dióxido de Carbono , Estudos Cross-Over , Cetonas , HipoventilaçãoRESUMO
Aortic dissection and rupture are the major causes of premature death in persons with Marfan syndrome (MFS), a rare genetic disorder featuring cardiovascular, skeletal, and ocular impairments. We and others have found that obstructive sleep apnea (OSA) confers significant vascular stress in this population and may accelerate aortic disease progression. We hypothesized that D-dimer, a diagnostic biomarker for several types of vascular injury that is also elevated in persons with MFS with aortic enlargement, may be sensitive to cardiovascular stresses caused by OSA. To test this concept, we recruited 16 persons with MFS without aortic dissection and randomized them to two nights of polysomnography, without (baseline) and with OSA treatment: continuous positive airway pressure (CPAP). In addition to scoring OSA by the apnea-hypopnea index (AHI), beat-by-beat systolic BP (SBP) and pulse-pressure (PP) fluctuations were quantified. Morning blood samples were also assayed for D-dimer levels. In this cohort (male:female, 10:6; age, 36 ± 13 yr; aortic diameter, 4 ± 1 cm), CPAP eliminated OSA (AHI: 20 ± 17 vs. 3 ± 2 events/h, P = 0.001) and decreased fluctuations in SBP (13 ± 4 vs. 9 ± 3 mmHg, P = 0.011) and PP (7 ± 2 vs. 5 ± 2 mmHg, P = 0.013). CPAP also reduced D-dimer levels from 1,108 ± 656 to 882 ± 532 ng/mL (P = 0.023). Linear regression revealed a positive association between the maximum PP during OSA and D-dimer in both the unadjusted (r = 0.523, P = 0.038) and a model adjusted for contemporaneous aortic root diameter (r = 0.733, P = 0.028). Our study revealed that overnight CPAP reduces D-dimer levels commensurate with the elimination of OSA and concomitant hemodynamic fluctuations. Morning D-dimer measurements together with OSA screening might serve as predictors of vascular injury in MFS.NEW & NOTEWORTHY What is New? Surges in blood pressure caused by obstructive sleep apnea during sleep increase vascular stress and D-dimer levels in Marfan syndrome. Elevations in D-dimer can be lowered with CPAP. What is Noteworthy? D-dimer levels might serve as a marker for determining the significance of obstructive sleep apnea in persons with Marfan syndrome. D-dimer or obstructive sleep apnea screening is a potential method to identify persons with Marfan syndrome at risk for adverse cardiovascular events.
Assuntos
Síndrome de Marfan , Apneia Obstrutiva do Sono , Adulto , Pressão Sanguínea/fisiologia , Pressão Positiva Contínua nas Vias Aéreas , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio , Humanos , Masculino , Síndrome de Marfan/complicações , Síndrome de Marfan/diagnóstico , Pessoa de Meia-Idade , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/terapia , Adulto JovemRESUMO
PURPOSE OF THE REVIEW: Time-restricted eating (TRE) is a promising dietary intervention for weight loss and improvement of cardiometabolic risk factors. We aim to provide a critical review of blood pressure outcomes reported in clinical TRE studies in adults with metabolic syndrome, in the context of the proposed mechanisms that underlie the relationship between timing of eating and blood pressure. RECENT FINDINGS: Clinical TRE studies report mixed results pertaining to blood pressure outcomes, likely due to significant heterogeneity in study design and TRE protocols. Mechanistically, TRE's metabolic benefits have been speculated to be mediated by alignment of meal timing with circadian regulation of metabolic processes and/or enhancement of catabolism as a result of prolonging the fasting period. TRE protocols that start and end earlier appear to have more pronounced blood pressure lowering effects. Blood pressure also tends to be lower with narrower eating windows. Concurrent weight loss is not consistently linked to blood pressure reduction, while lower insulin levels may be an important factor for blood pressure reduction. Notably, no published studies have reported 24-h blood pressure profiles or data on blood pressure variability. Blood pressure has only been examined in limited TRE studies, measured at a single time point. Given the clinical relevance of blood pressure's diurnal variability and the mechanistic evidence underlying timing of eating and blood pressure effects, more studies are needed to investigate TRE's effects on the diurnal variability of blood pressure.
Assuntos
Hipertensão , Insulinas , Síndrome Metabólica , Adulto , Pressão Sanguínea , Comportamento Alimentar/fisiologia , Humanos , Obesidade , Redução de PesoRESUMO
In January 2019, a European Respiratory Society research seminar entitled "Targeting the detrimental effects of sleep disturbances and disorders" was held in Dublin, Ireland. It provided the opportunity to critically review the current evidence of pathophysiological responses of sleep disturbances, such as sleep deprivation, sleep fragmentation or circadian misalignment and of abnormalities in physiological gases such as oxygen and carbon dioxide, which occur frequently in respiratory conditions during sleep. A specific emphasis of the seminar was placed on the evaluation of the current state of knowledge of the pathophysiology of cardiovascular and metabolic diseases in obstructive sleep apnoea (OSA). Identification of the detailed mechanisms of these processes is of major importance to the field and this seminar offered an ideal platform to exchange knowledge, and to discuss pitfalls of current models and the design of future collaborative studies. In addition, we debated the limitations of current treatment strategies for cardiometabolic complications in OSA and discussed potentially valuable alternative approaches.
Assuntos
Doenças Cardiovasculares , Apneia Obstrutiva do Sono , Doenças Cardiovasculares/terapia , Humanos , Irlanda , Medicina de Precisão , Sono , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/terapiaRESUMO
RATIONALE: Leptin treats upper airway obstruction and alveolar hypoventilation in leptin-deficient ob/ob mice. However, obese humans and mice with diet-induced obesity (DIO) are resistant to leptin because of poor permeability of the blood-brain barrier. We propose that intranasal leptin will bypass leptin resistance and treat sleep-disordered breathing in obesity. OBJECTIVES: To assess if intranasal leptin can treat obesity hypoventilation and upper airway obstruction during sleep in mice with DIO. METHODS: Male C57BL/6J mice were fed with a high-fat diet for 16 weeks. A single dose of leptin (0.4 mg/kg) or BSA (vehicle) were administered intranasally or intraperitoneally, followed by either sleep studies (n = 10) or energy expenditure measurements (n = 10). A subset of mice was treated with leptin daily for 14 days for metabolic outcomes (n = 20). In a separate experiment, retrograde viral tracers were used to examine connections between leptin receptors and respiratory motoneurons. MEASUREMENTS AND MAIN RESULTS: Acute intranasal, but not intraperitoneal, leptin decreased the number of oxygen desaturation events in REM sleep, and increased ventilation in non-REM and REM sleep, independently of metabolic effects. Chronic intranasal leptin decreased food intake and body weight, whereas intraperitoneal leptin had no effect. Intranasal leptin induced signal transducer and activator of transcription 3 phosphorylation in hypothalamic and medullary centers, whereas intraperitoneal leptin had no effect. Leptin receptor-positive cells were synaptically connected to respiratory motoneurons. CONCLUSIONS: In mice with DIO, intranasal leptin bypassed leptin resistance and significantly attenuated sleep-disordered breathing independently of body weight.
Assuntos
Leptina/metabolismo , Absorção Nasal/fisiologia , Obesidade/complicações , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/fisiopatologia , Sono/fisiologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos AnimaisRESUMO
Obstructive sleep apnea (OSA) is a common disorder that describes recurrent collapse of the upper airway during sleep. Animal models have been pivotal to the understanding of OSA pathogenesis, consequences, and treatment. In this review, we highlight the history of OSA research in animals and include the discovery of animals with spontaneous OSA, the induction of OSA in animals, and the emulation of OSA using exposures to intermittent hypoxia and sleep fragmentation.
Assuntos
Pesquisa Biomédica , Pulmão/fisiopatologia , Respiração , Síndromes da Apneia do Sono/fisiopatologia , Sono , Animais , Pesquisa Biomédica/história , Pesquisa Biomédica/tendências , Difusão de Inovações , Modelos Animais de Doenças , Previsões , História do Século XX , História do Século XXI , Humanos , Hipóxia/complicações , Hipóxia/fisiopatologia , Prognóstico , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/etiologia , Síndromes da Apneia do Sono/história , Síndromes da Apneia do Sono/terapia , Especificidade da EspécieRESUMO
NEFA are mobilised from adipose tissues during fasting or stress. Under conditions of acute or chronic NEFA excess, skeletal muscle and hepatic insulin resistance may ensue. Hence, a wealth of literature has focused on the crosstalk between NEFA and glucose in the pathogenesis of insulin resistance. Sleep restriction has also been shown to acutely induce insulin resistance, and self-reported short sleep duration is associated with diabetes. In this issue of Diabetologia (DOI: 10.1007/s00125-015-3500-4), Broussard and colleagues examine the impact of acute sleep restriction on detailed 24 h metabolic profiles, including plasma NEFA. Here, we address the potential clinical relevance of these findings and pose questions for further research.
Assuntos
Ritmo Circadiano , Ácidos Graxos não Esterificados/sangue , Privação do Sono/sangue , Sono , Humanos , MasculinoAssuntos
Hiperglicemia , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Glicemia , Humanos , Cetonas , Lipídeos , Metabolômica , FumaçaRESUMO
Obstructive sleep apnea (OSA) is a common disorder associated with cardiovascular disease (CVD). One theory to explain this relationship proposes that OSA can induce systemic inflammation, thereby inducing CVD. This theory is based on the premise that obesity is a pro-inflammatory state, and that physiological derangements during sleep in subjects with OSA further aggravate inflammation. In support of this theory, some clinical studies have shown elevated inflammatory biomarkers in OSA subjects, or improvement in these markers following treatment of OSA. However, the data are inconsistent and often confounded by the effects of comorbid obesity. Animal models of OSA have been developed, which involve exposure of rodents or cells to intermittent hypoxia, a hallmark feature of OSA. Several of these experiments demonstrate that intermittent hypoxia can stimulate inflammatory pathways and lead to cardiovascular or metabolic pathology. In this review, we review relationships between OSA and inflammation, with particular attention to studies published within the last year.
Assuntos
Inflamação/complicações , Obesidade/complicações , Apneia Obstrutiva do Sono/complicações , Animais , Humanos , Inflamação/fisiopatologia , Obesidade/fisiopatologia , Apneia Obstrutiva do Sono/fisiopatologiaAssuntos
Doenças Cardiovasculares , Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Animais , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Modelos Animais de Doenças , Humanos , Hipóxia , Camundongos , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/epidemiologiaRESUMO
Obstructive sleep apnea causes intermittent hypoxia (IH) during sleep and is associated with dysregulation of glucose metabolism. We developed a novel model of clinically realistic IH in mice to test the hypothesis that IH causes hyperglycemia, glucose intolerance, and insulin resistance via activation of the sympathetic nervous system. Mice were exposed to acute hypoxia of graded severity (21, 14, 10, and 7% O2) or to IH of graded frequency [oxygen desaturation index (ODI) of 0, 15, 30, or 60, SpO2 nadir 80%] for 30 min to measure levels of glucose fatty acids, glycerol, insulin, and lactate. Glucose tolerance tests and insulin tolerance tests were then performed under each hypoxia condition. Next, we examined these outcomes in mice that were administered phentolamine (α-adrenergic blockade) or propranolol (ß-adrenergic blockade) or that underwent adrenal medullectomy before IH exposure. In all experiments, mice were maintained in a thermoneutral environment. Sustained and IH induced hyperglycemia, glucose intolerance, and insulin resistance in a dose-dependent fashion. Only severe hypoxia (7% O2) increased lactate, and only frequent IH (ODI 60) increased plasma fatty acids. Phentolamine or adrenal medullectomy both prevented IH-induced hyperglycemia and glucose intolerance. IH inhibited glucose-stimulated insulin secretion, and phentolamine prevented the inhibition. Propranolol had no effect on glucose metabolism but abolished IH-induced lipolysis. IH-induced insulin resistance was not affected by any intervention. Acutely hypoxia causes hyperglycemia, glucose intolerance, and insulin resistance in a dose-dependent manner. During IH, circulating catecholamines act upon α-adrenoreceptors to cause hyperglycemia and glucose intolerance.
Assuntos
Medula Suprarrenal/fisiologia , Antagonistas Adrenérgicos alfa/farmacologia , Intolerância à Glucose/metabolismo , Hipóxia/metabolismo , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio/fisiologia , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacosRESUMO
RATIONALE: Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. OBJECTIVES: To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). METHODS: ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. MEASUREMENTS AND MAIN RESULTS: In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. CONCLUSIONS: HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.
Assuntos
Angiopoietinas/metabolismo , Aterosclerose/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/fisiopatologia , Apneia Obstrutiva do Sono/fisiopatologia , Gordura Subcutânea/fisiopatologia , Adipócitos/metabolismo , Adulto , Idoso , Proteína 4 Semelhante a Angiopoietina , Animais , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Feminino , Humanos , Hipóxia/metabolismo , Lipase Lipoproteica/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos SENCAR , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/fisiopatologia , Apneia Obstrutiva do Sono/metabolismo , Gordura Subcutânea/metabolismo , Regulação para Cima/fisiologiaRESUMO
Chronic intermittent hypoxia (CIH) inhibits plasma lipoprotein clearance and adipose lipoprotein lipase (LPL) activity in association with upregulation of an LPL inhibitor angiopoietin-like protein 4 (Angptl4). We hypothesize that CIH inhibits triglyceride (TG) uptake via Angptl4 and that an anti-Angptl4-neutralizing antibody would abolish the effects of CIH. Male C57BL/6J mice were exposed to four weeks of CIH or intermittent air (IA) while treated with Ab (30 mg/kg ip once a week). TG clearance was assessed by [H(3)]triolein administration retroorbitally. CIH delayed TG clearance and suppressed TG uptake and LPL activity in all white adipose tissue depots, brown adipose tissue, and lungs, whereas heart, liver, and spleen were not affected. CD146+ CD11b- pulmonary microvascular endothelial cells were responsible for TG uptake in the lungs and its inhibition by CIH. Antibody to Angptl4 decreased plasma TG levels and increased TG clearance and uptake into adipose tissue and lungs in both control and CIH mice to a similar extent, but did not reverse the effects of CIH. The antibody reversed the effects of CIH on LPL in adipose tissue and lungs. In conclusion, CIH inactivates LPL by upregulating Angptl4, but inhibition of TG uptake occurs predominantly via an Angptl4/LPL-independent mechanism.
Assuntos
Hipóxia/fisiopatologia , Triglicerídeos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/genética , Angiopoietinas/metabolismo , Animais , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Hypoxia has been shown to rapidly increase triglycerides in mice by decreasing plasma lipoprotein clearance. However, the usual temperature of hypoxic exposure is below thermoneutrality for mice, which may increase thermogenesis and energy requirements, resulting in higher tissue lipid uptake. We hypothesize that decreased lipid clearance and ensuing hyperlipidemia are caused by hypoxic suppression of metabolism at cold temperatures and, therefore, would not occur at thermoneutrality. Twelve-week-old, male C57BL6/J mice were exposed to 6 h of 10% O2 at the usual temperature (22°C) or thermoneutrality (30°C). Acclimation to 22°C increased lipid uptake in the heart, lungs, and brown adipose tissue, resulting in lower plasma triglyceride and cholesterol levels. At this temperature, hypoxia attenuated lipid uptake in most tissues, thereby raising plasma triglycerides and LDL cholesterol. Thermoneutrality decreased tissue lipid uptake, and hypoxia did not cause a further reduction in lipid uptake in any organs. Consequently, hypoxia at thermoneutrality did not affect plasma triglyceride levels. Unexpectedly, plasma HDL cholesterol increased. The effect of hypoxia on white adipose tissue lipolysis was also modified by temperature. Independent of temperature, hypoxia increased heart rate and glucose and decreased activity, body temperature, and glucose sensitivity. Our study underscores the importance of ambient temperature for hypoxia research, especially in studies of lipid metabolism.
Assuntos
Tecido Adiposo Marrom/metabolismo , Hiperlipidemias/prevenção & controle , Hipóxia/metabolismo , Hipóxia/terapia , Metabolismo dos Lipídeos , Pulmão/metabolismo , Miocárdio/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Regulação da Temperatura Corporal , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Temperatura Alta , Hiperlipidemias/etiologia , Hipóxia/sangue , Hipóxia/fisiopatologia , Lipólise , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Triglicerídeos/sangueRESUMO
INTRODUCTION: High-frequency chest wall oscillation (HFCWO) has been traditionally implemented for airway secretion clearance in conditions such as cystic fibrosis (CF) and bronchiectasis. There have been few reports of its use in refractory asthma. CASE REPORT: A 36-year-old, non-smoker male presented with a lifelong history of poorly controlled asthma. Despite multiple controller medications, he reported daily chest congestion, copious phlegm, and frequent exacerbations. Imaging, blood work, and bronchoscopy ruled out atypical infections, immunodeficiency, CF, and other chronic conditions. Pulmonary function tests supported a diagnosis of asthma. RESULTS: We initiated HFCWO therapy twice daily in addition to standard inhaled pharmacological therapy. After 2 months, the patient noted resolution of respiratory symptoms as well as improvement in lung function. He remained symptom-free at his 2-year follow-up. CONCLUSION: High-frequency chest oscillation may be useful in phenotypes of asthma characterized by prominent mucus hypersecretion.
Assuntos
Asma/terapia , Oscilação da Parede Torácica/métodos , Adulto , Asma/fisiopatologia , Oscilação da Parede Torácica/normas , Volume Expiratório Forçado/fisiologia , Humanos , MasculinoRESUMO
AIMS: Delayed lipoprotein clearance is associated with atherosclerosis. This study examined whether chronic intermittent hypoxia (CIH), a hallmark of obstructive sleep apnoea (OSA), can lead to hyperlipidaemia by inhibiting clearance of triglyceride rich lipoproteins (TRLP). METHODS AND RESULTS: Male C57BL/6J mice on high-cholesterol diet were exposed to 4 weeks of CIH or chronic intermittent air (control). FIO(2) was decreased to 6.5% once per minute during the 12 h light phase in the CIH group. After the exposure, we measured fasting lipid profile. TRLP clearance was assessed by oral gavage of retinyl palmitate followed by serum retinyl esters (REs) measurements at 0, 1, 2, 4, 10, and 24 h. Activity of lipoprotein lipase (LpL), a key enzyme of lipoprotein clearance, and levels of angiopoietin-like protein 4 (Angptl4), a potent inhibitor of the LpL activity, were determined in the epididymal fat pads, skeletal muscles, and heart. Chronic intermittent hypoxia induced significant increases in levels of total cholesterol and triglycerides, which occurred in TRLP and LDL fractions (P< 0.05 for each comparison). Compared with control mice, animals exposed to CIH showed increases in REs throughout first 10 h after oral gavage of retinyl palmitate (P< 0.05), indicating that CIH inhibited TRLP clearance. CIH induced a >5-fold decrease in LpL activity (P< 0.01) and an 80% increase in Angptl4 mRNA and protein levels in the epididymal fat, but not in the skeletal muscle or heart. CONCLUSIONS: CIH decreases TRLP clearance and inhibits LpL activity in adipose tissue, which may contribute to atherogenesis observed in OSA.
Assuntos
Tecido Adiposo/metabolismo , Hipóxia/metabolismo , Lipase Lipoproteica/metabolismo , Lipoproteínas/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Triglicerídeos/metabolismo , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/metabolismo , Animais , Glicemia/metabolismo , Quilomícrons/metabolismo , Dieta Aterogênica , Insulina/metabolismo , Lipoproteínas VLDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Apneia Obstrutiva do Sono/etiologiaRESUMO
The global epidemic of obesity and type 2 diabetes parallels the rampant state of sleep deprivation in our society. Epidemiological studies consistently show an association between insufficient sleep and metabolic dysfunction. Mechanistically, sleep and circadian rhythm exert considerable influences on hormones involved in appetite regulation and energy metabolism. As such, data from experimental sleep deprivation in humans demonstrate that insufficient sleep induces a positive energy balance with resultant weight gain, due to increased energy intake that far exceeds the additional energy expenditure of nocturnal wakefulness, and adversely impacts glucose metabolism. Conversely, animal models have found that sleep loss-induced energy expenditure exceeds caloric intake resulting in net weight loss. However, animal models have significant limitations, which may diminish the clinical relevance of their metabolic findings. Clinically, insomnia disorder and insomnia symptoms are associated with adverse glucose outcomes, though it remains challenging to isolate the effects of insomnia on metabolic outcomes independent of comorbidities and insufficient sleep durations. Furthermore, both pharmacological and behavioral interventions for insomnia may have direct metabolic effects. The goal of this review is to establish an updated framework for the causal links between insufficient sleep and insomnia and risks for type 2 diabetes and obesity.