Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Immunity ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38697119

RESUMO

Toll-like receptor 7 (TLR7) is essential for recognition of RNA viruses and initiation of antiviral immunity. TLR7 contains two ligand-binding pockets that recognize different RNA degradation products: pocket 1 recognizes guanosine, while pocket 2 coordinates pyrimidine-rich RNA fragments. We found that the endonuclease RNase T2, along with 5' exonucleases PLD3 and PLD4, collaboratively generate the ligands for TLR7. Specifically, RNase T2 generated guanosine 2',3'-cyclic monophosphate-terminated RNA fragments. PLD exonuclease activity further released the terminal 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) to engage pocket 1 and was also needed to generate RNA fragments for pocket 2. Loss-of-function studies in cell lines and primary cells confirmed the critical requirement for PLD activity. Biochemical and structural studies showed that PLD enzymes form homodimers with two ligand-binding sites important for activity. Previously identified disease-associated PLD mutants failed to form stable dimers. Together, our data provide a mechanistic basis for the detection of RNA fragments by TLR7.

2.
Mol Cell ; 83(2): 167-185.e9, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36577401

RESUMO

The DNA double-strand break repair complex Mre11-Rad50-Nbs1 (MRN) detects and nucleolytically processes DNA ends, activates the ATM kinase, and tethers DNA at break sites. How MRN can act both as nuclease and scaffold protein is not well understood. The cryo-EM structure of MRN from Chaetomium thermophilum reveals a 2:2:1 complex with a single Nbs1 wrapping around the autoinhibited Mre11 nuclease dimer. MRN has two DNA-binding modes, one ATP-dependent mode for loading onto DNA ends and one ATP-independent mode through Mre11's C terminus, suggesting how it may interact with DSBs and intact DNA. MRNs two 60-nm-long coiled-coil domains form a linear rod structure, the apex of which is assembled by the two joined zinc-hook motifs. Apices from two MRN complexes can further dimerize, forming 120-nm spanning MRN-MRN structures. Our results illustrate the architecture of MRN and suggest how it mechanistically integrates catalytic and tethering functions.


Assuntos
Reparo do DNA , DNA , Microscopia Crioeletrônica , DNA/genética , Hidrolases Anidrido Ácido/genética , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Trifosfato de Adenosina/metabolismo , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
EMBO J ; 39(19): e105071, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32840892

RESUMO

Inflammasomes execute a unique type of cell death known as pyroptosis. Mostly characterized in myeloid cells, caspase-1 activation downstream of an inflammasome sensor results in the cleavage and activation of gasdermin D (GSDMD), which then forms a lytic pore in the plasma membrane. Recently, CARD8 was identified as a novel inflammasome sensor that triggers pyroptosis in myeloid leukemia cells upon inhibition of dipeptidyl-peptidases (DPP). Here, we show that blocking DPPs using Val-boroPro triggers a lytic form of cell death in primary human CD4 and CD8 T cells, while other prototypical inflammasome stimuli were not active. This cell death displays morphological and biochemical hallmarks of pyroptosis. By genetically dissecting candidate components in primary T cells, we identify this response to be dependent on the CARD8-caspase-1-GSDMD axis. Moreover, DPP9 constitutes the relevant DPP restraining CARD8 activation. Interestingly, this CARD8-induced pyroptosis pathway can only be engaged in resting, but not in activated T cells. Altogether, these results broaden the relevance of inflammasome signaling and associated pyroptotic cell death to T cells, central players of the adaptive immune system.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Inflamassomos/imunologia , Ativação Linfocitária , Proteínas de Neoplasias/imunologia , Dipeptidil Peptidases e Tripeptidil Peptidases/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas de Ligação a Fosfato/imunologia
4.
Mol Syst Biol ; 18(2): e9816, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35156763

RESUMO

The core promoter plays a central role in setting metazoan gene expression levels, but how exactly it "computes" expression remains poorly understood. To dissect its function, we carried out a comprehensive structure-function analysis in Drosophila. First, we performed a genome-wide bioinformatic analysis, providing an improved picture of the sequence motifs architecture. We then measured synthetic promoters' activities of ~3,000 mutational variants with and without an external stimulus (hormonal activation), at large scale and with high accuracy using robotics and a dual luciferase reporter assay. We observed a strong impact on activity of the different types of mutations, including knockout of individual sequence motifs and motif combinations, variations of motif strength, nucleosome positioning, and flanking sequences. A linear combination of the individual motif features largely accounts for the combinatorial effects on core promoter activity. These findings shed new light on the quantitative assessment of gene expression in metazoans.


Assuntos
Biologia Computacional , Drosophila , Animais , Drosophila/genética , Genoma , Regiões Promotoras Genéticas
5.
J Biol Chem ; 295(52): 18065-18075, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33082141

RESUMO

TNF is a highly pro-inflammatory cytokine that contributes not only to the regulation of immune responses but also to the development of severe inflammatory diseases. TNF is synthesized as a transmembrane protein, which is further matured via proteolytic cleavage by metalloproteases such as ADAM17, a process known as shedding. At present, TNF is mainly detected by measuring the precursor or the mature cytokine of bulk cell populations by techniques such as ELISA or immunoblotting. However, these methods do not provide information on the exact timing and extent of TNF cleavage at single-cell resolution and they do not allow the live visualization of shedding events. Here, we generated C-tag TNF as a genetically encoded reporter to study TNF shedding at the single-cell level. The functionality of the C-tag TNF reporter is based on the exposure of a cryptic epitope on the C terminus of the transmembrane portion of pro-TNF on cleavage. In both denatured and nondenatured samples, this epitope can be detected by a nanobody in a highly sensitive and specific manner only upon TNF shedding. As such, C-tag TNF can successfully be used for the detection of TNF cleavage in flow cytometry and live-cell imaging applications. We furthermore demonstrate its applicability in a forward genetic screen geared toward the identification of genetic regulators of TNF maturation. In summary, the C-tag TNF reporter can be employed to gain novel insights into the complex regulation of ADAM-dependent TNF shedding.


Assuntos
Proteínas ADAM/metabolismo , Genes Reporter , Processamento de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Proteína Quinase C/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas ADAM/genética , Células HEK293 , Humanos , Proteína Quinase C/genética , Proteólise , Fator de Necrose Tumoral alfa/genética
6.
Development ; 142(17): 3046-57, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26329602

RESUMO

Epithelial sheets play essential roles as selective barriers insulating the body from the environment and establishing distinct chemical compartments within it. In invertebrate epithelia, septate junctions (SJs) consist of large multi-protein complexes that localize at the apicolateral membrane and mediate barrier function. Here, we report the identification of two novel SJ components, Pasiflora1 and Pasiflora2, through a genome-wide glial RNAi screen in Drosophila. Pasiflora mutants show permeable blood-brain and tracheal barriers, overelongated tracheal tubes and mislocalization of SJ proteins. Consistent with the observed phenotypes, the genes are co-expressed in embryonic epithelia and glia and are required cell-autonomously to exert their function. Pasiflora1 and Pasiflora2 belong to a previously uncharacterized family of tetraspan membrane proteins conserved across the protostome-deuterostome divide. Both proteins localize at SJs and their apicolateral membrane accumulation depends on other complex components. In fluorescence recovery after photobleaching experiments we demonstrate that pasiflora proteins are core SJ components as they are required for complex formation and exhibit restricted mobility within the membrane of wild-type epithelial cells, but rapid diffusion in cells with disrupted SJs. Taken together, our results show that Pasiflora1 and Pasiflora2 are novel integral components of the SJ and implicate a new family of tetraspan proteins in the function of these ancient and crucial cell junctions.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Junções Íntimas/metabolismo , Sequência de Aminoácidos , Animais , Barreira Hematoencefálica , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Epitélio/embriologia , Genes de Insetos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Morfogênese , Tamanho do Órgão , Traqueia/anatomia & histologia
7.
Glia ; 65(4): 606-638, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28133822

RESUMO

Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606-638.


Assuntos
Sistema Nervoso/citologia , Neuroglia/classificação , Neuroglia/fisiologia , Animais , Animais Geneticamente Modificados , Antígenos CD8/genética , Antígenos CD8/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Biophys J ; 110(4): 939-46, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26910430

RESUMO

In multicellular organisms, single-fluorophore imaging is obstructed by high background. To achieve a signal/noise ratio conducive to single-molecule imaging, we adapted reflected light-sheet microscopy (RLSM) to image highly opaque late-stage Drosophila embryos. Alignment steps were modified by means of commercially available microprisms attached to standard coverslips. We imaged a member of the septate-junction complex that was used to outline the three-dimensional epidermal structures of Drosophila embryos. Furthermore, we show freely diffusing single 10 kDa Dextran molecules conjugated to one to two Alexa647 dyes inside living embryos. We demonstrate that Dextran diffuses quickly (∼6.4 µm(2)/s) in free space and obeys directional movement within the epidermal tissue (∼0.1 µm(2)/s). Our single-particle-tracking results are supplemented by imaging the endosomal marker Rab5-GFP and by earlier reports on the spreading of morphogens and vesicles in multicellular organisms. The single-molecule results suggest that RLSM will be helpful in studying single molecules or complexes in multicellular organisms.


Assuntos
Drosophila melanogaster/embriologia , Embrião não Mamífero , Luz , Imagem Individual de Molécula/métodos , Animais , Dispositivos Ópticos , Imagem Individual de Molécula/instrumentação
9.
Front Immunol ; 13: 1074440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578489

RESUMO

Necroptosis is a form of regulated cell death that can occur downstream of several immune pathways. While previous studies have shown that dysregulated necroptosis can lead to strong inflammatory responses, little is known about the identity of the endogenous molecules that trigger these responses. Using a reductionist in vitro model, we found that soluble TNF is strongly released in the context of necroptosis. On the one hand, necroptosis promotes TNF translation by inhibiting negative regulatory mechanisms acting at the post-transcriptional level. On the other hand, necroptosis markedly enhances TNF release by activating ADAM proteases. In studying TNF release at single-cell resolution, we found that TNF release triggered by necroptosis is activated in a switch-like manner that exceeds steady-state TNF processing in magnitude and speed. Although this shedding response precedes massive membrane damage, it is closely associated with lytic cell death. Further, we found that lytic cell death induction using a pore-forming toxin also triggers TNF shedding, indicating that the activation of ADAM proteases is not strictly related to the necroptotic pathway but likely associated with biophysical changes of the cell membrane upon lytic cell death. These results demonstrate that lytic cell death, particularly necroptosis, is a critical trigger for TNF release and thus qualify TNF as a necroptosis-associated alarmin.


Assuntos
Alarminas , Apoptose , Humanos , Necrose , Necroptose , Fator de Necrose Tumoral alfa/metabolismo , Peptídeo Hidrolases
10.
Sci Rep ; 12(1): 15330, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097274

RESUMO

While recent technological developments contributed to breakthrough advances in single particle cryo-electron microscopy (cryo-EM), sample preparation remains a significant bottleneck for the structure determination of macromolecular complexes. A critical time factor is sample optimization that requires the use of an electron microscope to screen grids prepared under different conditions to achieve the ideal vitreous ice thickness containing the particles. Evaluating sample quality requires access to cryo-electron microscopes and a strong expertise in EM. To facilitate and accelerate the selection procedure of probes suitable for high-resolution cryo-EM, we devised a method to assess the vitreous ice layer thickness of sample coated grids. The experimental setup comprises an optical interferometric microscope equipped with a cryogenic stage and image analysis software based on artificial neural networks (ANN) for an unbiased sample selection. We present and validate this approach for different protein complexes and grid types, and demonstrate its performance for the assessment of ice quality. This technique is moderate in cost and can be easily performed on a laboratory bench. We expect that its throughput and its versatility will contribute to facilitate the sample optimization process for structural biologists.


Assuntos
Gelo , Interferometria , Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares/química , Manejo de Espécimes/métodos
11.
Chemphyschem ; 12(8): 1588-95, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21154947

RESUMO

Three new photostable rylene dyes for applications in single molecule studies and membrane labelling have been synthesized and their photophysical properties were characterized. These dyes differ in the number of polyethylene glycol (PEG) chains attached to the core structure which is either a perylene derivate or a terrylene derivate. One perylene and one terrylene dye is modified with two PEG chains, and another terrylene derivate has four PEG chains. The results show that the terrylene dye with four PEG chains (4-PEG-TDI) forms soluble nonfluorescing H-aggregates in water, so that the absorption bands are blue-shifted with respect to those of the fluorescing monomeric form. The presence of a surfactant such as Pluronic P123 leads to the disruption of the aggregates due to the formation of monomers in micelles and a strong increase in fluorescence. Application for labelling cell membranes can be considered for this dye since it adsorbs in a similar way as monomer to a lipid bilayer. Furthermore a single-molecule study of all three rylene dyes in polymeric films of PMMA showed excellent photostability with respect to photobleaching, far above the photostability of other common water-soluble dyes, such as Oxazine-1, Atto647N, Cy5, Alexa647 and Rhodamin6G. Especially 4-PEG-TDI seems to be a promising dye for membrane labelling with its high photostability.


Assuntos
Antracenos/química , Membrana Celular/química , Corantes Fluorescentes/química , Polietilenoglicóis/química , Carbocianinas/química , AMP Cíclico/análogos & derivados , AMP Cíclico/química , Oxazinas/química , Rodaminas/química , Espectrometria de Fluorescência
12.
Elife ; 102021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34382936

RESUMO

The blood-brain barrier (BBB) of Drosophila comprises a thin epithelial layer of subperineural glia (SPG), which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions (SJs). Previously, we identified a novel Gi/Go protein-coupled receptor (GPCR), Moody, as a key factor in BBB formation at the embryonic stage. However, the molecular and cellular mechanisms of Moody signaling in BBB formation and maturation remain unclear. Here, we identify cAMP-dependent protein kinase A (PKA) as a crucial antagonistic Moody effector that is required for the formation, as well as for the continued SPG growth and BBB maintenance in the larva and adult stage. We show that PKA is enriched at the basal side of the SPG cell and that this polarized activity of the Moody/PKA pathway finely tunes the enormous cell growth and BBB integrity. Moody/PKA signaling precisely regulates the actomyosin contractility, vesicle trafficking, and the proper SJ organization in a highly coordinated spatiotemporal manner. These effects are mediated in part by PKA's molecular targets MLCK and Rho1. Moreover, 3D reconstruction of SJ ultrastructure demonstrates that the continuity of individual SJ segments, and not their total length, is crucial for generating a proper paracellular seal. Based on these findings, we propose that polarized Moody/PKA signaling plays a central role in controlling the cell growth and maintaining BBB integrity during the continuous morphogenesis of the SPG secondary epithelium, which is critical to maintain tissue size and brain homeostasis during organogenesis.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Animais , Barreira Hematoencefálica/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Receptores Acoplados a Proteínas G/metabolismo
13.
Nano Lett ; 9(8): 2877-83, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19572735

RESUMO

We apply mesoporous thin silica films with nanometer-sized pores as drug carriers and incorporate the widely used anticancer drug Doxorubicin. Through single-molecule based measurements, we gain mechanistic insights into the drug diffusion inside the mesoporous film, which governs the drug-delivery at the target-site. Drug dynamics inside the nanopores is controlled by pore size and surface modification. The release kinetics is determined and live-cell measurements prove the applicability of the system for drug-delivery. This study demonstrates that mesoporous silica nanomaterials can provide solutions for current challenges in nanomedicine.


Assuntos
Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Dióxido de Silício , Antineoplásicos/química , Células HeLa , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Porosidade , Tensoativos/química
14.
iScience ; 23(11): 101694, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33163946

RESUMO

An essential event in gene regulation is the binding of a transcription factor (TF) to its target DNA. Models considering the interactions between the TF and the DNA geometry proved to be successful approaches to describe this binding event, while conserving data interpretability. However, a direct characterization of the DNA shape contribution to binding is still missing due to the lack of accurate and large-scale binding affinity data. Here, we use a binding assay we recently established to measure with high sensitivity the binding specificities of 13 Drosophila TFs, including dinucleotide dependencies to capture non-independent amino acid-base interactions. Correlating the binding affinities with all DNA shape features, we find that shape readout is widely used by these factors. A shape readout/TF-DNA complex structure analysis validates our approach while providing biological insights such as positively charged or highly polar amino acids often contact nucleotides that exhibit strong shape readout.

15.
iScience ; 23(2): 100824, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31982782

RESUMO

The DNA of eukaryotes is wrapped around histone octamers to form nucleosomes. Although it is well established that the DNA sequence significantly influences nucleosome formation, its precise contribution has remained controversial, partially owing to the lack of quantitative affinity data. Here, we present a method to measure DNA-histone binding free energies at medium throughput and with high sensitivity. Competitive nucleosome formation is achieved through automation, and a modified epifluorescence microscope is used to rapidly and accurately measure the fractions of bound/unbound DNA based on fluorescence anisotropy. The procedure allows us to obtain full titration curves with high reproducibility. We applied this technique to measure the histone-DNA affinities for 47 DNA sequences and analyzed how the affinities correlate with relevant DNA sequence features. We found that the GC content has a significant impact on nucleosome-forming preferences, but 10 bp dinucleotide periodicities and the presence of poly(dA:dT) stretches do not.

16.
Commun Biol ; 3(1): 663, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184447

RESUMO

The gene regulatory network governing anterior-posterior axis formation in Drosophila is a well-established paradigm to study transcription in developmental biology. The rapid temporal dynamics of gene expression during early stages of development, however, are difficult to track with standard techniques. We optimized the bright and fast-maturing fluorescent protein mNeonGreen as a real-time, quantitative reporter of enhancer expression. We derive enhancer activity from the reporter fluorescence dynamics with high spatial and temporal resolution, using a robust reconstruction algorithm. By comparing our results with data obtained with the established MS2-MCP system, we demonstrate the higher detection sensitivity of our reporter. We used the reporter to quantify the activity of variants of a simple synthetic enhancer, and observe increased activity upon reduction of enhancer-promoter distance or addition of binding sites for the pioneer transcription factor Zelda. Our reporter system constitutes a powerful tool to study spatio-temporal gene expression dynamics in live embryos.


Assuntos
Drosophila , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Transcriptoma/genética , Animais , Sítios de Ligação/genética , Padronização Corporal/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Feminino , Redes Reguladoras de Genes/genética , Genes Reporter/genética , Masculino , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Chemphyschem ; 10(1): 180-90, 2009 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-19072960

RESUMO

The photophysical properties of three new water-soluble terrylenediimide (WS-TDI) derivatives are investigated and their utilization in biological experiments is demonstrated. Each of these dyes can be excited in the far red region of the visible spectrum, making them good candidates for in-vivo studies. Single-molecule techniques characterize their photophysics that is, the number of emitted photons, blinking characteristics and survival times until photobleaching takes place. All three dyes exhibit bright fluorescence, as well as an extremely high resistance against photodegradation compared to other well-known fluorophores. Due to their different characteristics the three new WS-TDI derivatives are suitable for specialized biological applications. WS-TDI dodecyl forms non-fluorescent aggregates in water which can be disrupted in a hydrophobic environment leading to a monomeric fluorescent form. Due to its high lipophilicity WS-TDI dodecyl anchors efficiently in lipid bilayers with its alkyl chain and hence can be ideally used to image membranes and membrane-containing compartments in living cells. In contrast, the positively charged WS-TDI pyridoxy is a new type of chromophore in the WS-TDI family. It is fully solubilized in water forming fluorescent monomers and is successfully used to label the envelope of herpes simplex viruses. Finally, it is shown that a WS-TDI derivative functionalized with N-hydroxysuccinimide ester moiety (WS-TDI/NHS ester) provides a versatile reactive dye molecule for the specific labelling of amino groups in biomolecules such as DNA.


Assuntos
Antracenos/química , Corantes Fluorescentes/química , Imidas/química , DNA/química , Células HeLa , Humanos , Bicamadas Lipídicas , Microscopia Confocal , Espectrometria de Fluorescência
18.
J Vis Exp ; (144)2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799844

RESUMO

Accurate quantification of transcription factor (TF)-DNA interactions is essential for understanding the regulation of gene expression. Since existing approaches suffer from significant limitations, we have developed a new method for determining TF-DNA binding affinities with high sensitivity on a large scale. The assay relies on the established fluorescence anisotropy (FA) principle but introduces important technical improvements. First, we measure a full FA competitive titration curve in a single well by incorporating TF and a fluorescently labeled reference DNA in a porous agarose gel matrix. Unlabeled DNA oligomer is loaded on the top as a competitor and, through diffusion, forms a spatio-temporal gradient. The resulting FA gradient is then read out using a customized epifluorescence microscope setup. This improved setup greatly increases the sensitivity of FA signal detection, allowing both weak and strong binding to be reliably quantified, even for molecules of similar molecular weights. In this fashion, we can measure one titration curve per well of a multi-well plate, and through a fitting procedure, we can extract both the absolute dissociation constant (KD) and active protein concentration. By testing all single-point mutation variants of a given consensus binding sequence, we can survey the entire binding specificity landscape of a TF, typically on a single plate. The resulting position weight matrices (PWMs) outperform those derived from other methods in predicting in vivo TF occupancy. Here, we present a detailed guide for implementing HiP-FA on a conventional automated fluorescent microscope and the data analysis pipeline.


Assuntos
DNA/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Polarização de Fluorescência , Regulação da Expressão Gênica , Microscopia de Fluorescência , Ligação Proteica
19.
Nat Commun ; 10(1): 689, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723200

RESUMO

In the original version of this Article, equation three contained a sign error whereby the term RT was added when it should have been subtracted. This has now been corrected in the PDF and HTML versions of the Article.

20.
J Am Chem Soc ; 130(5): 1638-48, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-18193868

RESUMO

Single dye molecules incorporated into a mesoporous matrix can act as highly sensitive reporters of their environment. Here, we use single TDI molecules incorporated as guests into hexagonal mesoporous films containing highly structured domains. The dye molecules allow us to map the size of these domains which can extend to over 100 microm. Investigation of the translational and orientational dynamics via single molecule fluorescence techniques gives structural as well as dynamical information about the host material. In an air atmosphere, the guest molecules show no movement but perfect orientation along the pore direction. The diffusion of the TDI molecules can be induced by placing the mesoporous film in a saturated atmosphere of chloroform. In single molecule measurements with very high positioning accuracy (down to 2-3 nm) the movement of molecules could be observed even between neighboring channels. This reveals the presence of defects like dead ends closing the pores or small openings in the silica walls between neighboring channels, where molecules can change from one channel to the next. A statistical analysis demonstrates that the diffusion of TDI in the mesoporous film cannot be described with a 1D-random diffusion but is more complicated due to the presence of adsorption sites in which the TDI molecules can be occasionally trapped.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA