Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(5): 2021-2036, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595542

RESUMO

Semantic cognition is a complex multifaceted brain function involving multiple processes including sensory, semantic, and domain-general cognitive systems. However, it remains unclear how these systems cooperate with each other to achieve effective semantic cognition. Here, we used independent component analysis (ICA) to investigate the functional brain networks that support semantic cognition. We used a semantic judgment task and a pattern-matching control task, each with 2 levels of difficulty, to disentangle task-specific networks from domain-general networks. ICA revealed 2 task-specific networks (the left-lateralized semantic network [SN] and a bilateral, extended semantic network [ESN]) and domain-general networks including the frontoparietal network (FPN) and default mode network (DMN). SN was coupled with the ESN and FPN but decoupled from the DMN, whereas the ESN was synchronized with the FPN alone and did not show a decoupling with the DMN. The degree of decoupling between the SN and DMN was associated with semantic task performance, with the strongest decoupling for the poorest performing participants. Our findings suggest that human higher cognition is achieved by the multiple brain networks, serving distinct and shared cognitive functions depending on task demands, and that the neural dynamics between these networks may be crucial for efficient semantic cognition.


Assuntos
Encéfalo , Semântica , Humanos , Cognição , Mapeamento Encefálico , Julgamento , Imageamento por Ressonância Magnética , Vias Neurais
2.
J Neurosci ; 42(15): 3241-3252, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35232759

RESUMO

The human dorsolateral prefrontal cortex (DLPFC; approximately corresponding to Brodmann areas 9 and 46) has demonstrable roles in diverse executive functions such as working memory, cognitive flexibility, planning, inhibition, and abstract reasoning. However, it remains unclear whether this is the result of one functionally homogeneous region or whether there are functional subdivisions within the DLPFC. Here, we divided the DLPFC into seven areas along rostral-caudal and dorsal-ventral axes anatomically and explored their respective patterns of structural and functional connectivity. In vivo probabilistic tractography (11 females and 13 males) and resting-state functional magnetic resonance imaging (fMRI; 57 females and 21 males) were employed to map out the patterns of connectivity from each DLPFC subregion. Structural connectivity demonstrated graded intraregional connectivity within the DLPFC. The patterns of structural connectivity between the DLPFC subregions and other cortical areas revealed that the dorsal-rostral subregions connections were restricted to other frontal and limbic areas, whereas the ventral-caudal region was widely connected to frontal, parietal, and limbic cortex. Functional connectivity analyses demonstrated that subregions of DLPFC were strongly interconnected to each other. The dorsal subregions were associated with the default mode network (DMN), while middle dorsal-rostral subregions were linked with the multiple demand network (MDN). The ventral-caudal subregion showed increased functional coupling with both DMN and MDN. Our results suggest that the connectivity of the DLPFC may be subdivided along a dorsorostral-ventrocaudal axis with differing (albeit graded) patterns of connectivity reflecting the integrative executive function of the DLPFC.SIGNIFICANCE STATEMENT Research has shown that the dorsolateral prefrontal cortex (DLPFC) plays a role in various executive functions. By dividing the DLPFC into seven areas along rostral-caudal and dorsal-ventral axes anatomically, we explored their patterns of structural and functional connectivity. The patterns of connectivity within DLPFC subregions demonstrated graded intraregional connectivity. There were distinctive patterns of connectivity with other cortical areas in dorsal-rostral and ventral-caudal DLPFC subregions. Divisions across DLPFC subregions seem to align with their structural and functional connectivity. Our results suggest that DLPFC may be subdivided by the diagonal axis of the dorsal-ventral axis and rostral-caudal axis, supporting the framework of a functional organization along the anterior-posterior axis in the lateral PFC.


Assuntos
Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Mapeamento Encefálico , Função Executiva/fisiologia , Feminino , Humanos , Inibição Psicológica , Masculino , Memória de Curto Prazo , Córtex Pré-Frontal/fisiologia
3.
Cereb Cortex ; 32(24): 5664-5681, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35196706

RESUMO

Decades of research have highlighted the importance of lateral parietal cortex (LPC) across a myriad of cognitive domains. Yet, the underlying function of LPC remains unclear. Two domains that have emphasized LPC involvement are semantic memory and episodic memory retrieval. From each domain, sophisticated functional models have been proposed, as well as the more domain-general assumption that LPC is engaged by any form of internally directed cognition (episodic/semantic retrieval being examples). Here we used a combination of functional magnetic resonance imaging, functional connectivity, and diffusion tensor imaging white-matter connectivity to show that (i) ventral LPC (angular gyrus [AG]) was positively engaged during episodic retrieval but disengaged during semantic memory retrieval and (ii) activity negatively varied with task difficulty in the semantic task whereas episodic activation was independent of difficulty. In contrast, dorsal LPC (intraparietal sulcus) showed domain general activation that was positively correlated with task difficulty. Finally, (iii) a dorsal-ventral and anterior-posterior gradient of functional and structural connectivity was found across the AG (e.g. mid-AG connected with episodic retrieval). We propose a unifying model in which LPC as a whole might share a common underlying neurocomputation (multimodal buffering) with variations in the emergent cognitive functions across subregions arising from differences in the underlying connectivity.


Assuntos
Memória Episódica , Semântica , Mapeamento Encefálico , Imagem de Tensor de Difusão , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Imageamento por Ressonância Magnética/métodos
4.
Neuromodulation ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37952136

RESUMO

OBJECTIVES: Many chronic pain conditions show evidence of dysregulated synaptic plasticity, including the development and maintenance of central sensitization. This provides a strong rationale for neuromodulation therapies for the relief of chronic pain. However, variability in responses and low fidelity across studies remain an issue for both clinical trials and pain management, demonstrating insufficient mechanistic understanding of effective treatment protocols. MATERIALS AND METHODS: In a randomized counterbalanced crossover designed study, we evaluated two forms of patterned repetitive transcranial magnetic stimulation, known as continuous theta burst stimulation (TBS) and intermittent TBS, during normal and central sensitization states. Secondary hyperalgesia (a form of use-dependent central sensitization) was induced using a well-established injury-free pain model and assessed by standardized quantitative sensory testing involving light touch and pinprick pain thresholds in addition to stimulus-response functions. RESULTS: We found that continuous TBS of the human motor cortex has a facilitatory (pronociceptive) effect on the magnitude of perceived pain to secondary hyperalgesia, which may rely on induction and expression of neural plasticity through heterosynaptic long-term potentiation-like mechanisms. CONCLUSIONS: By defining the underlying mechanisms of TBS-driven synaptic plasticity in the nociceptive system, we offer new insight into disease mechanisms and provide targets for promoting functional recovery and repair in chronic pain. For clinical applications, this knowledge is critical for development of more efficacious and mechanisms-based neuromodulation protocols, which are urgently needed to address the chronic pain and opioid epidemics.

5.
Neuroimage ; 258: 119386, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35709948

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique used to modulate cortical excitability in the human brain. However, one major challenge with rTMS is that the responses to stimulation are highly variable across individuals. The underlying reasons why responses to rTMS are highly variable between individuals still remain unclear. Here, we investigated whether the response to continuous theta-burst stimulation (cTBS) - an effective rTMS protocol for decreasing cortical excitability - is related to individual differences in glutamate and GABA neurotransmission. We acquired resting-state magnetic resonance spectroscopy (MRS) and functional magnetic resonance imaging (fMRI) during semantic processing. Then, we applied cTBS over the anterior temporal lobe (ATL), a hub for semantic representation, to explore the relationship between the baseline neurochemical profiles in this region and the response to cTBS. We found that the baseline excitation-inhibition balance (glutamate + glutamine/GABA ratio) in the ATL was associated with individual cTBS responsiveness during semantic processing. Specifically, individuals with lower excitation-inhibition balance showed stronger inhibitory effect - poorer semantic performance. Our results revealed that non-responders (subjects who did not show an inhibitory effect of cTBS on subsequent semantic performance) had higher excitatory-inhibitory balance in the ATL, which led to up-regulated task-induced regional activity as well as increased ATL-connectivity with other semantic regions compared to responders. These results disclose that the baseline neurochemical state of a cortical region can be a significant factor in predicting responses to cTBS.


Assuntos
Semântica , Estimulação Magnética Transcraniana , Glutamatos , Humanos , Imageamento por Ressonância Magnética , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Estimulação Magnética Transcraniana/métodos , Ácido gama-Aminobutírico
6.
J Cogn Neurosci ; 33(6): 1082-1095, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428784

RESUMO

The role of the left angular gyrus (AG) in language processing remains unclear. In this study, we used TMS to test the hypothesis that the left AG causally supports the processes necessary for context-dependent integration and encoding of information during language processing. We applied on-line TMS over the left AG to disrupt the on-line context-dependent integration during a language reading task, specifically while human participants integrated information between two sequentially presented paragraphs of text ("context" and "target" paragraphs). We assessed the effect of TMS on the left AG by asking participants to retrieve integrated contextual information when given the target condition as cue in a successive memory task. Results from the memory task showed that TMS applied over the left AG during reading impaired the formation of integrated context-target representation. These results provide the first evidence of a causal link between the left AG function, on-line information integration, and associative encoding during language processing.


Assuntos
Imageamento por Ressonância Magnética , Leitura , Humanos , Idioma , Lobo Parietal
7.
Neuroimage ; 234: 117959, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744456

RESUMO

Accumulating, converging evidence indicates that the anterior temporal lobe (ATL) appears to be the transmodal hub for semantic representation. A series of repetitive transcranial magnetic stimulation (rTMS) investigations utilizing the 'virtual lesion' approach have established the brain-behavioural relationship between the ATL and semantic processing by demonstrating that inhibitory rTMS over the ATL induced impairments in semantic performance in healthy individuals. However, a growing body of rTMS studies suggest that rTMS might also be a tool for cognitive enhancement and rehabilitation, though there has been no previous exploration in semantic cognition. Here, we explored a potential role of rTMS in enhancing and inhibiting semantic performance with contrastive rTMS protocols (1 Hz vs. 20 Hz) by controlling practice effects. Twenty-one healthy participants were recruited and performed an object category judgement task and a pattern matching task serving as a control task before and after the stimulation over the ATL (1 Hz, 20 Hz, and sham). A task familiarization procedure was performed prior to the experiment in order to establish a 'stable baseline' prior to stimulation and thus minimize practice effect. Our results demonstrated that it is possible to modulate semantic performance positively or negatively depending on the ATL stimulation frequency: 20 Hz rTMS was optimal for facilitating cortical processing (faster RT in a semantic task) contrasting with diminished semantic performance after 1 Hz rTMS. In addition to cementing the importance of the ATL to semantic representation, our findings suggest that 20 Hz rTMS leads to semantic enhancement in healthy individuals and potentially could be used for patients with semantic impairments as a therapeutic tool.


Assuntos
Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Semântica , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Fatores de Tempo , Adulto Jovem
8.
Neuroimage ; 240: 118375, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245868

RESUMO

Recent evidence demonstrates that activation-dependent neuroplasticity on a structural level can occur in a short time (2 hour or less) in the human brain. However, the exact time scale of structural plasticity in the human brain remains unclear. Using voxel-based morphometry (VBM), we investigated changes in grey matter (GM) after one session of continuous theta-burst stimulation (cTBS) delivered to the anterior temporal lobe (ATL). Twenty-five participants received cTBS over the left ATL or the occipital pole as a control site outside of the scanner, followed by structural and functional imaging. During functional imaging, participants performed a semantic association task and a number judgment task as a control task. VBM results revealed decreased GM in the left ATL and right cerebellum after the ATL stimulation compared to the control stimulation. In addition, cTBS over the left ATL induced slower semantic reaction times, reduced regional activity at the target site, and altered functional connectivity between the left and right ATL during semantic processing. Furthermore, the decreased ATL GM density was associated with the interhemispheric ATL-connectivity changes after the ATL stimulation. These results demonstrate that structural alterations caused by one session of cTBS are mirrored in the functional reorganizations in the semantic representation system, showing the rapid dynamics of cortical plasticity. Our findings support fast adapting neuronal plasticity such as synaptic morphology changes. Our results suggest that TBS is able to produce powerful changes in regional synaptic activity in the adult human brain.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Plasticidade Neuronal/fisiologia , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
9.
J Neurophysiol ; 125(4): 1180-1190, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33625934

RESUMO

The ability to induce neuroplasticity with noninvasive brain stimulation techniques offers a unique opportunity to examine the human brain systems involved in pain modulation. In experimental and clinical settings, the primary motor cortex (M1) is commonly targeted to alleviate pain, but its mechanism of action remains unclear. Using dynamic causal modeling (DCM) and Bayesian model selection (BMS), we tested seven competing hypotheses about how transcranial magnetic stimulation (TMS) modulates the directed influences (or effective connectivity) between M1 and three distinct cortical areas of the medial and lateral pain systems, including the insular cortex (INS), anterior cingulate cortex (ACC), and parietal operculum cortex (PO). The data set included a novel fMRI acquisition collected synchronously with M1 stimulation during rest and while performing a simple hand motor task. DCM and BMS showed a clear preference for the fully connected model in which all cortical areas receive input directly from M1, with facilitation of the connections INS→M1, PO→M1, and ACC→M1, plus increased inhibition of their reciprocal connections. An additional DCM analysis comparing the reduced models only corresponding to networks with a sparser connectivity within the full model showed that M1 input into the INS is the second-best model of plasticity following TMS manipulations. The results reported here provide a starting point for investigating whether pathway-specific targeting involving M1↔INS improves analgesic response beyond conventional targeting. We eagerly await future empirical data and models that tests this hypothesis.NEW & NOTEWORTHY Transcranial magnetic stimulation of the primary motor cortex (M1) is a promising treatment for chronic pain, but its mechanism of action remains unclear. Competing dynamic causal models of effective connectivity between M1 and medial and lateral pain systems suggest direct input into the insular, anterior cingulate cortex, and parietal operculum. This supports the hypothesis that analgesia produced from M1 stimulation most likely acts through the activation of top-down processes associated with intracortical modulation.


Assuntos
Giro do Cíngulo/fisiologia , Modelos Teóricos , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Lobo Parietal/fisiologia , Estimulação Magnética Transcraniana , Adulto , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Adulto Jovem
10.
Eur J Neurosci ; 51(8): 1784-1793, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31705723

RESUMO

Magnetic resonance spectroscopy (MRS) is a research tool for measuring the concentration of metabolites such as γ-aminobutyric acid (GABA) and glutamate in the brain. MEGA-PRESS has been the preferred pulse sequence for GABA measurements due to low physiological GABA concentrations, hence low signal. To compensate, researchers incorporate long acquisition durations (7-10 min) making functional measurements of this metabolite challenging. Here, the acquisition duration and sample sizes required to detect specific concentration changes in GABA using MEGA-PRESS at 3 T are presented for both between-groups and within-session study designs. 75 spectra were acquired during rest using MEGA-PRESS from 41 healthy volunteers in 6 different brain regions at 3 T with voxel sizes between 13 and 22 cm3 . Between-group and within-session variance was calculated for different acquisition durations and power calculations were performed to determine the number of subjects required to detect a given percentage change in GABA/NAA signal ratio. Within-subject variability was assessed by sampling different segments of a single acquisition. Power calculations suggest that detecting a 15% change in GABA using a 2 min acquisition and a 27 cm3 voxel size, depending on the region, requires between 8 and 93 subjects using a within-session design. A between-group design typically requires more participants to detect the same difference. In brain regions with suboptimal shimming, the subject numbers can be up to 4-fold more. Collecting data for longer than 4 min in brain regions examined in this study is deemed unnecessary, as variance in the signal did not reduce further for longer durations.


Assuntos
Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico , Encéfalo/diagnóstico por imagem , Ácido Glutâmico , Humanos , Espectroscopia de Ressonância Magnética
11.
NMR Biomed ; 31(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29130590

RESUMO

γ-Aminobutyric acid (GABA) and glutamate (Glu), major neurotransmitters in the brain, are recycled through glutamine (Gln). All three metabolites can be measured by magnetic resonance spectroscopy in vivo, although GABA measurement at 3 T requires an extra editing acquisition, such as Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS). In a GABA-edited MEGA-PRESS spectrum, Glu and Gln co-edit with GABA, providing the possibility to measure all three in one acquisition. In this study, we investigated the reliability of the composite Glu + Gln (Glx) peak estimation and the possibility of Glu and Gln separation in GABA-edited MEGA-PRESS spectra. The data acquired in vivo were used to develop a quality assessment framework which identified MEGA-PRESS spectra in which Glu and Gln could be estimated reliably. Phantoms containing Glu, Gln, GABA and N-acetylaspartate (NAA) at different concentrations were scanned using GABA-edited MEGA-PRESS at 3 T. Fifty-six sets of spectra in five brain regions were acquired from 36 healthy volunteers. Based on the Glu/Gln ratio, data were classified as either within or outside the physiological range. A peak-by-peak quality assessment was performed on all data to investigate whether quality metrics can discriminate between these two classes of spectra. The quality metrics were as follows: the GABA signal-to-noise ratio, the NAA linewidth and the Glx Cramer-Rao lower bound (CRLB). The Glu and Gln concentrations were estimated with precision across all phantoms with a linear relationship between the measured and true concentrations: R1 = 0.95 for Glu and R1 = 0.91 for Gln. A quality assessment framework was set based on the criteria necessary for a good GABA-edited MEGA-PRESS spectrum. Simultaneous criteria of NAA linewidth <8 Hz and Glx CRLB <16% were defined as optimum features for reliable Glu and Gln quantification. Glu and Gln can be reliably quantified from GABA-edited MEGA-PRESS acquisitions. However, this reliability should be controlled using the quality assessment methods suggested in this work.


Assuntos
Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico/metabolismo , Adulto , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Adulto Jovem
12.
Cereb Cortex ; 26(8): 3580-3590, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27242027

RESUMO

Higher cognitive function reflects the interaction of a network of multiple brain regions. Previous investigations have plotted out these networks using functional or structural connectivity approaches. While these map the topography of the regions involved, they do not explore the key aspect of this neuroscience principle-namely that the regions interact in a dynamic fashion. Here, we achieved this aim with respect to semantic memory. Although converging evidence implicates the anterior temporal lobes (ATLs), bilaterally, as a crucial component in semantic representation, the underlying neural interplay between the ATLs remains unclear. By combining continuous theta-burst stimulation (cTBS) with functional magnetic resonance imaging (fMRI), we perturbed the left ventrolateral ATL (vATL) and investigated acute changes in neural activity and effective connectivity of the semantic system. cTBS resulted in decreased activity at the target region and compensatory, increased activity at the contralateral vATL. In addition, there were task-specific increases in effective connectivity between the vATLs, reflecting an increased facilitatory intrinsic connectivity from the right to left vATL. Our results suggest that semantic representation is founded on a flexible, adaptive bilateral neural system and reveals an adaptive plasticity-based mechanism that might support functional recovery after unilateral damage in neurological patients.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Semântica , Adaptação Fisiológica/fisiologia , Adulto , Análise de Variância , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Humanos , Julgamento/fisiologia , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Testes Neuropsicológicos , Tempo de Reação/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
13.
J Clin Neurol ; 20(5): 469-477, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39227329

RESUMO

BACKGROUND AND PURPOSE: Alzheimer's disease (AD) is the most-prevalent form of dementia and imposes substantial burdens at the personal and societal levels. The apolipoprotein E (APOE) ε4 allele is a genetic factor known to increase AD risk and exacerbate brain atrophy and its symptoms. We aimed to provide a comprehensive review of the impacts of APOE ε4 on brain atrophy in AD as well as in mild cognitive impairment (MCI) as a transitional stage of AD. METHODS: We performed a coordinate-based meta-analysis of voxel-based morphometry studies to compare gray-matter atrophy patterns between carriers and noncarriers of APOE ε4. We obtained coordinate-based structural magnetic resonance imaging data from 1,135 individuals who met our inclusion criteria among 12 studies reported in PubMed and Google Scholar. RESULTS: We found that atrophy of the hippocampus and parahippocampus was significantly greater in APOE ε4 carriers than in noncarriers, especially among those with AD and MCI, while there was no significant atrophy in these regions in healthy controls who were also carriers. CONCLUSIONS: The present meta-analysis has highlighted the significant link between the APOE ε4 allele and hippocampal atrophy in both AD and MCI, which emphasizes the critical influence of the allele on neurodegeneration, especially in the hippocampus. These findings improve the understanding of AD pathology, potentially facilitating progress in early detection, targeted interventions, and personalized care strategies for individuals at risk of AD who carry the APOE ε4 allele.

14.
medRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766196

RESUMO

Background: Alzheimer's disease (AD) is the most prevalent form of dementia, exerting substantial personal and societal impacts. The apolipoprotein E (APOE) ε4 allele is a known genetic factor that increases the risk of AD, contributing to more severe brain atrophy and exacerbated symptoms. Purpose: We aim to provide a comprehensive review of the impacts of the APOE ε4 allele on brain atrophy in AD and mild cognitive impairment (MCI) as a transitional stage of AD. Methods: We performed a coordinate-based meta-analysis of voxel-based morphometry (VBM) studies to identify the patterns of grey matter atrophy in APOE ε4 carriers vs. non-carriers. We obtained coordinate-based structural magnetic resonance imaging (MRI) data for 1135 individuals from 12 studies on PubMed and Google Scholar that met our inclusion criteria. Results: We found significant atrophy in the hippocampus and parahippocampus of APOE ε4 carriers compared to non-carriers, especially within the AD and MCI groups, while healthy controls showed no significant atrophy in these regions. Conclusion: Our meta-analysis sheds light on the significant link between the APOE ε4 allele and hippocampal atrophy in both AD and MCI, emphasizing the allele's critical influence on neurodegeneration, especially in the hippocampus. Our findings contribute to the understanding of the disease's pathology, potentially facilitating progress in early detection, targeted interventions, and personalized care strategies for individuals with the APOE ε4 allele who are at risk for Alzheimer's Disease.

15.
Front Pain Res (Lausanne) ; 3: 1005634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506269

RESUMO

The ability of non-invasive brain stimulation to induce neuroplasticity and cause long-lasting functional changes is of considerable interest for the reversal of chronic pain and disability. Stimulation of the primary motor cortex (M1) has provided some of the most encouraging after-effects for therapeutic purposes, but little is known about its underlying mechanisms. In this study we combined transcranial Direct Current Stimulation (tDCS) and fMRI to measure changes in task-specific activity and interregional functional connectivity between M1 and the whole brain. Using a randomized counterbalanced sham-controlled design, we applied anodal and cathodal tDCS stimulation over the left M1. In agreement with previous studies, we demonstrate that tDCS applied to the target region induces task-specific facilitation of local brain activity after anodal tDCS, with the stimulation effects having a negative relationship to the resting motor threshold. Beyond the local effects, tDCS also induced changes in multiple downstream regions distinct from the motor system that may be important for therapeutic efficacy, including the operculo-insular and cingulate cortex. These results offer opportunities to improve outcomes of tDCS for the individual patient based on the degree of presumed neuroplasticity. Further research is still warranted to address the optimal stimulation targets and parameters for those with disease-specific symptoms of chronic pain.

16.
Neuroimage Clin ; 35: 103038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35569227

RESUMO

BACKGROUND: Aphasia is one of the most common causes of post-stroke disabilities. As the symptoms and impact of post-stroke aphasia are heterogeneous, it is important to understand how topographical lesion heterogeneity in patients with aphasia is associated with different domains of language impairments. Here, we aim to provide a comprehensive overview of neuroanatomical basis in post-stroke aphasia through coordinate based meta-analysis of voxel-based lesion-symptom mapping studies. METHODS: We performed a meta-analysis of lesion-symptom mapping studies in post-stroke aphasia. We obtained coordinate-based structural neuroimaging data for 2,007 individuals with aphasia from 25 studies that met predefined inclusion criteria. RESULTS: Overall, our results revealed that the distinctive patterns of lesions in aphasia are associated with different language functions and tasks. Damage to the insular-motor areas impaired speech with preserved comprehension and a similar pattern was observed when the lesion covered the insular-motor and inferior parietal lobule. Lesions in the frontal area severely impaired speaking with relatively good comprehension. The repetition-selective deficits only arise from lesions involving the posterior superior temporal gyrus. Damage in the anterior-to-posterior temporal cortex was associated with semantic deficits. CONCLUSION: The association patterns of lesion topography and specific language deficits provide key insights into the specific underlying language pathways. Our meta-analysis results strongly support the dual pathway model of language processing, capturing the link between the different symptom complexes of aphasias and the different underlying location of damage.


Assuntos
Afasia , Acidente Vascular Cerebral , Afasia/diagnóstico por imagem , Afasia/etiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico/métodos , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Lobo Temporal/patologia
17.
Cereb Cortex Commun ; 3(2): tgac021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673329

RESUMO

Introduction: Neurofibromatosis 1 (NF1) is a single-gene disorder associated with cognitive impairments, particularly with deficits in working memory. Prior research indicates that brain structure is affected in NF1, but it is unclear how these changes relate to aspects of cognition. Methods: 29 adolescents aged 11-17 years were compared to age and sex-matched controls. NF1 subjects were assessed using detailed multimodal measurements of working memory at baseline followed by a 3T MR scan. A voxel-based morphometry approach was used to estimate the total and regional gray matter(GM) volumetric differences between the NF1 and control groups. The working memory metrics were subjected to a principal component analysis (PCA) approach. Results: The NF1 groups showed increased gray matter volumes in the thalamus, corpus striatum, dorsal midbrain and cerebellum bilaterally in the NF1 group as compared to controls. Principal component analysis on the working memory metrics in the NF1 group yielded three independent factors reflecting high memory load, low memory load and auditory working memory. Correlation analyses revealed that increased volume of posterior cingulate cortex, a key component of the default mode network (DMN) was significantly associated with poorer performance on low working memory load tasks. Conclusion: These results are consistent with prior work showing larger subcortical brain volumes in the NF1 cohort. The strong association between posterior cingulate cortex volume and performance on low memory load conditions supports hypotheses of deficient DMN structural development, which in turn may contribute to the cognitive impairments in NF1.

18.
Sci Rep ; 12(1): 18297, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316421

RESUMO

Neurofibromatosis 1 (NF1) is a single-gene disorder associated with cognitive phenotypes common to neurodevelopmental conditions such as autism. GABAergic dysregulation underlies working memory impairments seen in NF1. This mechanistic experimental study investigates whether application of anodal transcranial direct current stimulation (atDCS) can modulate GABA and working memory in NF1. Thirty-one NF1 adolescents 11-18 years, were recruited to this single-blind sham-controlled cross-over randomized trial. AtDCS or sham stimulation was applied to the left Dorsolateral Prefrontal Cortex (DLPFC) and MR Spectroscopy was collected before and after intervention in the left DLPFC and occipital cortex. Task-related functional MRI was collected before, during, and after stimulation. Higher baseline GABA+ in the left DLPFC was associated with faster response times on baseline working memory measures. AtDCS was seen to significantly reduced GABA+ and increase brain activation in the left DLPFC as compared to sham stimulation. Task performance was worse in the aTDCS group during stimulation but no group differences in behavioural outcomes were observed at the end of stimulation. Although our study suggests aTDCS modulates inhibitory activity in the DLPFC, further work is needed to determine whether repeated sessions of atDCS and strategies such as alternating current stimulation offer a better therapeutic approach.


Assuntos
Neurofibromatose 1 , Estimulação Transcraniana por Corrente Contínua , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Ácido gama-Aminobutírico , Neurofibromatose 1/terapia , Córtex Pré-Frontal/fisiologia , Método Simples-Cego , Estimulação Transcraniana por Corrente Contínua/métodos
19.
J Autism Dev Disord ; 52(4): 1478-1494, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33963966

RESUMO

Neurofibromatosis 1 (NF1) is a single gene disorder associated with working Memory (WM) impairments. The aim of this study was to investigate P300 event-related potential (ERP) associated with WM in NF1. Sixteen adolescents with NF1 were compared with controls on measures of WM and EEG was recorded during a WM nback task. The NF1 group showed poorer performance on measures of WM as compared to the control group. No group differences were observed in P300 amplitude at Pz, but P300 latency was shorter in the NF1 group. Topographic analyses of P300 amplitude showed group differences indicating neural processing differences in the NF1 group relative to controls, which possibly contribute to the cognitive deficits seen in this population.


Assuntos
Transtorno do Espectro Autista , Neurofibromatose 1 , Adolescente , Cognição , Potenciais Evocados/fisiologia , Humanos , Memória de Curto Prazo/fisiologia , Neurofibromatose 1/complicações
20.
PLoS One ; 16(4): e0249111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857191

RESUMO

When people confuse and reject a non-word that is created by switching two adjacent letters from an actual word, is called the transposition confusability effect (TCE). The TCE is known to occur at the very early stages of visual word recognition with such unit exchange as letters or syllables, but little is known about the brain mechanisms of TCE. In this study, we examined the neural correlates of TCE and the effect of a morpheme boundary placement on TCE. We manipulated the placement of a morpheme boundary by exchanging places of two syllables embedded in Korean morphologically complex words made up of lexical morpheme and grammatical morpheme. In the two experimental conditions, the transposition syllable within-boundary condition (TSW) involved exchanging two syllables within the same morpheme, whereas the across-boundary condition (TSA) involved the exchange of syllables across the stem and grammatical morpheme boundary. During fMRI, participants performed the lexical decision task. Behavioral results revealed that the TCE was found in TSW condition, and the morpheme boundary, which is manipulated in TSA, modulated the TCE. In the fMRI results, TCE induced activation in the left inferior parietal lobe (IPL) and intraparietal sulcus (IPS). The IPS activation was specific to a TCE and its strength of activation was associated with task performance. Furthermore, two functional networks were involved in the TCE: the central executive network and the dorsal attention network. Morpheme boundary modulation suppressed the TCE by recruiting the prefrontal and temporal regions, which are the key regions involved in semantic processing. Our findings propose the role of the dorsal visual pathway in syllable position processing and that its interaction with other higher cognitive systems is modulated by the morphological boundary in the early phases of visual word recognition.


Assuntos
Encéfalo/fisiologia , Conectoma , Leitura , Adulto , Feminino , Humanos , Linguística , Imageamento por Ressonância Magnética , Masculino , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA