RESUMO
In-water cleaning (IWC) involves the removal of biofilms and foulants from the hull of a ship using brush or water jet. During IWC, several factors associated with the harmful chemical contaminants release to the marine environment, which can create "hotspots" of chemical contamination in coastal areas. To elucidate the potential toxic effects of IWC discharge, we investigated developmental toxicity in embryonic flounder, which are sensitive life stage to chemical exposure. Zinc and copper were the dominant metals, while zinc pyrithione was the most abundant biocide associated with IWC discharge in two remotely operated IWC. Discharge from IWC carried by both remotely operated vehicles (ROVs) produced developmental malformations including pericardial edema, spinal curvature, and tail-fin defects. In an analyses of differential gene expression profiles (fold-change of genes with a cutoff < 0.05) as assessed by high-throughput RNA sequencing, genes associated with muscle development were commonly and significantly changed. The gene ontology (GO) of embryos exposed to IWC discharge from ROV A activities highly enriched muscle and heart development, while cell signaling and transport were evident in embryos exposed to IWC discharge of ROV B. We analyzed the gene network by significant GO terms. In the network, TTN, MYOM1, CASP3, and CDH2 genes appeared to be key regulators of the toxic effects on muscle development. In embryos exposed to ROV B discharge, HSPG2, VEGFA, and TNF genes related to the nervous system pathway were affected. These results shed light on the potential impacts of muscle and nervous system development in non-target coastal organisms exposed to contaminants found in IWC discharge.
Assuntos
Procedimentos Cirúrgicos Robóticos , Poluentes Químicos da Água , Animais , Água/química , Peixes , Metais/farmacologia , Biofilmes , Poluentes Químicos da Água/análise , Embrião não MamíferoRESUMO
A new generation of booster biocides that include metal pyrithiones (PTs) such as copper pyrithione (CuPT) and zinc pyrithione (ZnPT) are being used as tributyltin alternatives. In the marine environment, ZnPT can easily transchelate Cu to form CuPT, and the environmental fate and persistence of these two metal pyrithiones are closely related. Although some data on the toxicity of biocides on marine fish are available, little is known about their toxicity and toxic pathway. We thus compared the toxic effects of CuPT and ZnPT on embryonic olive flounder (Paralichthys olivaceus) by investigating their adverse effects based on developmental morphogenesis and transcriptional variation. In our study, the toxic potency of CuPT was greater with respect to developmental malformation and mortality than ZnPT. Consistent with the developmental effects, the expression of genes related to tail fin malformation (including plod2, furin, and wnt3a) was higher in embryonic flounder exposed to CuPT than in those exposed to ZnPT. Genes related to muscle and nervous system development exhibited significant changes on differential gene expression profiles using RNA sequencing (cutoff value P < 0.05). Gene ontology analysis of embryos exposed to CuPT revealed affected cellular respiration and kidney development, whereas genes associated with cell development, nervous system development and heart development showed significant variation in embryonic flounder exposed to ZnPT. Overall, our study clarifies the common and unique developmental toxic effects of CuPT and ZnPT through transcriptomic analyses in embryonic flounder.
Assuntos
Desinfetantes , Linguado , Poluentes Químicos da Água , Animais , Desinfetantes/toxicidade , Linguado/genética , Compostos Organometálicos , Piridinas , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Flounders have been widely used as indicator species for monitoring the benthic environment of marine coastal regions owing to their habitat and feeding preferences in or on sandy sediments. Here, a single-step, sensitive, specific, and simple luciferase assay was developed, using the olive flounder cyp1a1 gene, for effective detection of CYP1A-inducing contaminants in coastal sediments. The developed cyp1a1-luciferase assay was highly sensitive to the widely used CYP1A inducers 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo[a]pyrene (B[a]P), and 3,3',4,4',5-pentachlorobiphenyl (PCB 126). In the case of TCDD, significant dose-dependent increases in luciferase activity (0.3-300 ng/L) were detected. The assay was more sensitive to PCB 126 than to B[a]P. The assay also involved the highly sensitive expression of luciferase to extracted mixtures of PCBs and polycyclic aromatic hydrocarbons (PAHs) collected from coastal sediments. PCBs were more capable of cyp1a1 induction in the assay system at small doses than PAHs in environmental samples. Using the cyp1a1-luciferase assay along with water or sediment chemistry will certainly aid in diagnosing CYP1A-inducing contaminants in coastal environments.
Assuntos
Linguado , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Hidrocarbonetos Policíclicos Aromáticos , Animais , Citocromo P-450 CYP1A1/genética , Luciferases/genéticaRESUMO
To examine how tributyltin (TBT), a model obesogen, affects the lipid metabolism in the marine rotifer Brachionus koreanus, we carried out life-cycle studies and determined the in vitro and in silico interactions of retinoid X receptor (RXR) with TBT, the transcriptional levels of RXR and lipid metabolic genes, and the fatty acid content. The lethal concentration 10% (LC10) was determined to be 5.12 µg/L TBT, and negative effects on ecologically relevant end points (e.g., decreased lifespan and fecundity) were detected at 5 µg/L TBT. On the basis of these findings, subsequent experiments were conducted below 1 µg/L TBT, which did not show any negative effects on ecologically relevant end points in B. koreanus. Nile red staining analysis showed that after exposure to 1 µg/L TBT, B. koreanus stored neutral lipids and had significantly increased transcriptional levels of RXR and lipid metabolism-related genes compared to the control. However, the content of total fatty acids did not significantly change at any exposure level. In the single fatty acids profile, a significant increase in saturated fatty acids (SFAs) 14:0 and 20:0 was observed, but the contents of omega-3 and omega-6 fatty acids were significantly decreased. Also, a transactivation assay of TBT with RXR showed that TBT is an agonist of Bk-RXR with a similar fold-induction to the positive control. Taken together, these results demonstrate that TBT-modulated RXR signaling leads to increase in transcriptional levels of lipid metabolism-related genes and the synthesis of SFAs but decreases the content of polyunsaturated fatty acids (PUFAs). Our findings support a wider taxonomic scope of lipid perturbation due to xenobiotic exposure that occurs via NRs in aquatic animals.
Assuntos
Rotíferos , Compostos de Trialquitina , Animais , Metabolismo dos Lipídeos , Receptores X de RetinoidesRESUMO
The use of alternative biocides has increased due to their economic and ecological relevance. Although data regarding the toxicity of commercial alternative biocides in marine organisms are accumulating, little is known about their toxic pathways or mechanisms. To compare the toxic effects of commercial alternative biocides on non-target pelagic fish (flounder) embryos, we investigated the adverse effects of developmental malformation and transcriptional changes. Three biocides including Diuron, Irgarol 1051® and Sea-Nine 211® produced a largely overlapping suite of developmental malformations, including tail-fin fold defects and dorsal body axis curvature. In our test, the potencies of these biocides were ranked in the following order with respect to malformation and mortalities: Sea-Nine 211®â¯>â¯Irgarol 1051®â¯>â¯Diuron. Consistent with the toxicity rankings, the expression of genes related to heart formation was greater in embryonic flounder exposed to Sea-Nine 211® than in those exposed to Irgarol 1051® or Diuron, while expression of genes related to fin malformation was greater in the Irgarol 1051® exposure group. In analyses of differential gene expression (DEG) profiles (fold change of genes with a cutoff Pâ¯<â¯0.05) by high-throughput sequencing (RNA-seq), genes associated with nervous system development, transmembrane transport activity, and muscle cell development were significantly changed commonly. Embryos exposed to Diuron showed changes related to cellular protein localization, whereas genes associated with immune system processes were up-regulated significantly in embryos exposed to Irgarol 1051®. Genes related to actin filament organization and embryonic morphogenesis were up-regulated in embryos exposed to Sea-Nine 211®. Overall, our study provides a better understanding of the overlapping and unique developmental toxic effects of three commercial booster biocides through transcriptomic analyses in a non-target species, embryonic flounder.
Assuntos
Desinfetantes/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Peixes/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Animais , Incrustação Biológica/prevenção & controle , Diurona/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Tiazóis/toxicidade , Triazinas/toxicidadeRESUMO
To develop a brackish water flea as a promising model for marine monitoring, Diaphanosoma celebensis were exposed to two pollutants, cadmium (Cd) and benzo[a]pyrene (BaP), which have different chemical characteristics and distinct modes of metabolic action on aquatic animals. Twenty-four hours after exposure to Cd (2 mg/L) or BaP (25 µg/L), whole body transcriptomes were analyzed. In total, 99.6 Mbp were assembled from nine libraries, resulting in 98,458 transcripts with an N50 of 1883 bp and an average contig length of 968 bp. Functional gene annotations were performed using Gene Ontology, Eukaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Cd significantly modulated endocrine and digestive enzyme system. Following BaP treatment, DNA repair and circadian rhythm related metabolisms were significantly modulated. Both the chemicals induced stress response and detoxification metabolism. This brackish water flea genomic information will be useful to monitor estuaries and coastal regions, as water fleas have been confirmed as promising sentinel models in freshwater ecosystems.
Assuntos
Benzo(a)pireno/toxicidade , Cádmio/toxicidade , Ritmo Circadiano/genética , Cladocera/genética , Reparo do DNA/genética , Transcriptoma , Poluentes Químicos da Água/toxicidade , Animais , Cladocera/efeitos dos fármacos , Ecotoxicologia , Perfilação da Expressão GênicaRESUMO
Approximately 10,900 t of crude oil was released 10 km off the west coast of Korea after the collision between the oil tanker Hebei Spirit and a barge carrying a crane in December 2007. To assess the areal extent and temporal trends of PAH contamination, 428 sediment samples were collected from December 2007 through May 2015 for PAH analysis. Sedimentary PAH concentrations measured immediately after the spill ranged from 3.2 to 71,200 ng g-1, with a mean of 3800 ng g-1. Increases in PAH concentrations were observed at stations 7-23, which were heavily oiled due to tidal currents and northwesterly wind that transported the spilled oil to these locations. Mean and maximum PAH concentrations decreased drastically from 3800 to 88.5 and 71,200 to 1700 ng g-1, respectively, 4 months after the spill. PAH concentrations highly fluctuated until September 2008 and then decreased slowly to background levels. Reduction rate was much faster at the sandy beaches (k = 0.016) than in the muddy sites (k = 0.001). In muddy sediments, low attenuation due to low flushing rate in the mostly anaerobic sediment possibly contributed the persistence of PAHs. By May 2015 (~7.5 years after the spill), mean and maximum PAH concentrations decreased by 54 and 481 times, respectively, compared with the peak concentrations. The sedimentary PAH concentrations in the monitoring area have returned to regional background levels.
Assuntos
Monitoramento Ambiental , Poluição por Petróleo/análise , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , República da CoreiaRESUMO
Interspecific difference in the developmental toxicity of crude oil to embryonic fish allows the prediction of injury extent to a number of resident fish species in oil spill sites. This study clarifies the comparative developmental effects of Iranian heavy crude oil (IHCO) on the differences of biouptake and toxic sensitivity between embryonic spotted sea bass (Lateolabrax maculates) and olive flounder (Paralichthys olivaceus). From 24 h after exposure to IHCO, several morphological defects were observed in both species of embryonic fish, including pericardial edema, dorsal curvature of the trunk, developmental delay, and reduced finfolds. The severity of defects was greater in flounder compared to that in sea bass. While flounder embryos accumulated higher embryo PAH concentrations than sea bass, the former showed significantly lower levels of CYP1A expression. Although bioconcentration ratios were similar between the two species for some PAHs, phenanthrenes and dibenzothiophenes showed selectively higher bioconcentration ratios in flounder, suggesting that this species has a reduced metabolic capacity for these compounds. While consistent with a conserved cardiotoxic mechanism for petrogenic PAHs across diverse marine and freshwater species, these findings indicate that species-specific differences in toxicokinetics can be an important factor underlying species' sensitivity to crude oil.
Assuntos
Bass/embriologia , Linguado/embriologia , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Bass/metabolismo , Ecotoxicologia/métodos , Embrião não Mamífero , Linguado/metabolismo , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Especificidade da Espécie , Toxicocinética , Poluentes Químicos da Água/farmacocinéticaRESUMO
Lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α factor (LITAF) plays an important role controlling the expression of TNF-α and the other cytokine genes in the presence of LPS. However, two LITAF homologues have not been characterized in fish. In this study, we cloned two distinct LITAF (RbLITAF1 and RbLITAF2) cDNAs from rock bream (Oplegnathus fasciatus) and characterized their expression profiles after infection with Edwardsiella tarda, Streptococcus iniae or red seabream iridovirus (RSIV). The coding regions of RbLITAF1 and RbLITAF2 cDNAs were 492 bp and 417 bp, encoding 153 and 138 amino acid residues, respectively. The genes consisted of a LITAF domain. RbLITAF1 was highly expressed in the spleen and heart of healthy rock bream, whereas RbLITAF2 was highly expressed in the gill, intestine and stomach. In spleen, the gene expression of RbLITAF1 and RbLITAF2 were increased until 5 days post-infection (dpi), and then decreased at 7 dpi. In kidney, E. tarda and RSIV infection led to induction of the RbLITAF1 gene at 1 dpi, RbLITAF2 gene was down-regulated after pathogen infection. These results suggest that RbLITAFs may be involved in the LITAF-mediated immune response and regulate systemic immune responses against pathogen infection.
Assuntos
Proteínas de Peixes/genética , Regulação da Expressão Gênica , Perciformes/genética , Perciformes/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , DNA Complementar/metabolismo , Edwardsiella tarda/fisiologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Iridoviridae/fisiologia , Lipopolissacarídeos/farmacologia , Dados de Sequência Molecular , Perciformes/classificação , Filogenia , RNA/genética , RNA/metabolismo , Alinhamento de Sequência/veterinária , Streptococcus/fisiologiaRESUMO
To clarify the effects of spilled crude oil on fish bacterial disease resistance, rockfish (Sebastes schlegeli) were exposed to Iranian Heavy crude oil (IHCO) and Streptomyces iniae in combination. Hepatic biotransformation enzymes (ethoxyresorufin O-de-ethylase, glutathione-S-transferase) and plasma biochemical parameters (glutamic oxaloacetic transaminase, glutamic pyruvic transaminase and glucose) in fish exposed to IHCO were not significantly different from those in unexposed fish. The level of biliary 1-OH-pyrene and cytochrome P4501A mRNA expression increased in a dose-dependent manner with IHCO exposure. The interferon stimulated gene 15, interleukin-1beta and cathepsin L were increased significantly in the liver in IHCO-exposed fish, but not dose-dependently, but the granulocyte colony stimulating factor was not related to IHCO exposure. The percentage mortality in fish following a single exposure to S. iniae was positively correlated with IHCO exposure concentration. We concluded that IHCO exposure exacerbates fish mortality following environmental bacterial infection.
Assuntos
Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Peixes/imunologia , Petróleo/metabolismo , Infecções Estreptocócicas/veterinária , Streptococcus/fisiologia , Animais , Biotransformação , Doenças dos Peixes/metabolismo , Imunidade Inata , Fígado/enzimologia , Petróleo/toxicidade , Pirenos/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologiaRESUMO
While wastewater discharged from in-water cleaning process of ship hulls on rotifer consistently released into aquatic ecosystem, its detrimental effects on non-target animals are largely unclear. In this study, we provide evidence on detrimental effects of hull cleaning wastewater in the monogonont rotifer Brachionus manjavacas by analyzing biochemical and physiological parameters in its oxidative status, survival, lifespan, growth, fecundity, and population. The wastewater contained high concentrations of metals (Zn and Cu) and metal-based antifoulants (CuPT and ZnPT). Significant oxidative stress was observed in response to two wastewater samples [1) raw wastewater (RW) and 2) mechanical filtrated in the cleaning system (MF)]. Higher detrimental effects in survival, lifespan, fecundity, and population growth for 10 days were measured in the RW-exposed rotifers than those results analyzed in the MF-exposed rotifers. Two growth parameters, lorica length and width were also significantly modulated by both wastewater samples. These results indicate that even filtered hull cleaning wastewater would have deleterious effects on the maintenance of the rotifer population when they exposed constantly.
Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Águas Residuárias , Crescimento Demográfico , Ecossistema , Estágios do Ciclo de Vida , Estresse Oxidativo , Poluentes Químicos da Água/toxicidadeRESUMO
We conducted a comprehensive assessment involving acute effects on 96-hour survival and biochemical parameters, as well as chronic effects on growth and reproduction spanning three generations of the marine mysid Neomysis awatschensis exposed to filtered wastewater to evaluate the potential impact of ship hull-cleaning wastewater on crustaceans. The analyzed wastewater exhibited elevated concentrations of metals, specifically zinc (Zn) and copper (Cu) and metal-based antifoulants, i.e., Cu pyrithoine (CuPT) and Zn pyrithoine (ZnPT). The results revealed dose-dependent reductions in survival rates, accompanied by a notable increase in oxidative stress, in response to the sublethal values of two wastewater samples: 1) mechanically filtered using the cleaning system (MF) and 2) additionally filtered in the laboratory (LF) for 96 h. Mysids exposed to MF displayed higher mortality than those exposed to LF. Furthermore, mysids subjected to continuous exposure of 0.001% LF across three generations exhibited significant inhibition of the feeding rate, more pronounced growth retardation along with an extended intermolt duration, and a diminished rate of reproduction compared to the control. A noteworthy inhibition of the feeding rate and growth was observed in the first generation exposed only to the LF sample. However, although the reproduction rate was not significantly affected. Collectively, these findings underscore the potential harm posed by sublethal concentrations of wastewater to the health of mysid populations under consistent exposure.
Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Metais/farmacologia , Crustáceos , Cobre/toxicidade , ZincoRESUMO
Although the hazards of environmental microplastics (MPs) are well known, it is unclear which of their characteristics have the greatest effects on organism. We investigated the toxic effects of oral administration according to physical properties, including the shape of fragmented polyethylene terephthalate (PET) (FrPET) and fibrous PET (FiPET) MPs. After 72 h of exposure, apoptosis and phagocytic activity varied significantly among juvenile rockfish (Sebastes schlegeli) exposed to both FrPET and FiPET. The levels of immune-related genes and hepatic metabolic activity also increased after exposure to both shapes of MPs, but the variation in responses was greater in fish exposed to FiPET compared with those exposed to FrPET. The transcriptomic and metabolomics analysis results indicated that the maintenance and homeostasis of immune system was affected by oral exposure to FrPET and FiPET. The amino acid metabolic processes were identified in rockfish exposed to FrPET, but the notch signaling pathway were evident in the FiPET exposure group. Metabolomics analysis revealed that oral ingestion of MP fibers led to a stronger inflammatory response and greater oxidative stress in juvenile rockfish. These results can be used to understand environmentally dominant MP toxic effects such as type, size, shapes, as well as to prioritize ecotoxicological management.
RESUMO
While wastewater and paint particles discharged from the in-water cleaning process of ship hulls are consistently released into benthic ecosystems, their hazardous effects on non-target animals remain largely unclear. In this study, we provide evidence on acute harmful effects of hull cleaning wastewater in marine polychaete Perinereis aibuhitensis by analyzing physiological and biochemical parameters such as survival, burrowing activity, and oxidative status. Raw wastewater samples were collected during ship hull cleaning processes in the field. Two wastewater samples for the exposure experiment were prepared in the laboratory: 1) mechanically filtered in the in-water cleaning system (MF) and 2) additionally filtered with a 0.45 µm filter in the laboratory (LF). These wastewater samples contained high concentrations of metals (zinc and copper) and metal-based booster biocides (copper pyrithione and zinc pyrithione) compared to those analyzed in seawater. Polycheates were exposed to different concentrations of the two wastewater samples for 96 h. Higher mortality was observed in response to MF compared to LF-exposed polychaetes. Both wastewater samples dose-dependently decreased burrowing activity and AChE activity. Drastic oxidative stress was observed in response to the two wastewater samples. MDA levels were significantly increased by MF and LF samples. Significant GSH depletion was observed with MF exposure, while increased and decreased GSH contents were observed in LF-exposed polychaetes. Enzymatic activities of antioxidant components, catalase, superoxide dismutase, and glutathione S-transferase were significantly modulated by both wastewater samples. These results indicate that even filtered hull cleaning wastewater can have deleterious effects on the health status of polychaetes.
Assuntos
Estresse Oxidativo , Poliquetos , Águas Residuárias , Poluentes Químicos da Água , Animais , Poliquetos/efeitos dos fármacos , Poliquetos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Águas Residuárias/toxicidade , Águas Residuárias/química , Acetilcolinesterase/metabolismo , Desinfetantes/toxicidade , NaviosRESUMO
Plastics pose a considerable challenge to aquatic ecosystems because of their increasing global usage and non-biodegradable properties. Coastal plastic debris can persist in ecosystems; however, its effects on resident organisms remain unclear. A metagenomic analysis of the isopoda Ligia, collected from clean (Nae-do, ND) and plastic-contaminated sites (Maemul-do, MD) in South Korea, was conducted to clarify the effects of microplastic contamination on the gut microbiota. Ligia gut microbiota's total operational taxonomic units were higher in ND than in MD. Alpha diversity did not differ significantly between the two Ligia gut microbial communities collected from ND and MD, although richness (Observed species) was lower in MD than in ND. Proteobacteria (67.47%, ND; 57.30%, MD) and Bacteroidetes (13.63%, ND; 20.76%, MD) were the most abundant phyla found at both sites. Significant different genera in Ligia from EPS-polluted sites were observed. Functional gene analysis revealed that 19 plastic degradation-related genes, including those encoding hydrogenase, esterase, and carboxylesterase, were present in the gut microbes of Ligia from MD, indicating the potential role of the Ligia gut microbiota in plastic degradation. This study provides the first comparative field evidence of the gut microbiota dynamics of plastic detritus consumers in marine ecosystems.
Assuntos
Microbioma Gastrointestinal , Isópodes , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , República da Coreia , Animais , Isópodes/microbiologia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/efeitos adversos , Metagenômica/métodosRESUMO
To clarify the toxic effects of Iranian Heavy Crude Oil (IHCO) from the "Hebei spirit" oil spill, innate immune toxic effects defending on biotransformation pathway have been investigated on fish exposed to IHCO. Juvenile rockfish were exposed to IHCO in gelatin capsules by feeding. The effects on multiple fish biotransformation enzymes (Cytochrome P4501A and glutathione-S-transferase) and the expression level of the several immune response genes, including interleukin-1beta, granulocyte colony-stimulating factor and Cathepsin L, were measured in the liver, spleen and kidney. The tissue-specific expression patterns of these genes demonstrated that the highest expression levels of Cytochrome P4501A, glutathione-S-transferase, interleukin-1beta, granulocyte colony-stimulating factor, interferon stimulated gene 15 and Cathepsin L were found in the liver and that the TNF receptor was high in spleen. The oil-fed fish had significantly higher concentrations of biliary fluorescent metabolites and Cytochrome P4501A expression during the initial stage (12 â¼ 48 h after exposure) than those in the liver and kidney of the sham group. Similarly, the highest mRNA expression levels of interleukin-1beta and granulocyte colony-stimulating factor were detected in the liver at the early stages of exposure (12 h after exposure). Following exposure, the levels of interferon stimulated gene 15 and granulocyte colony-stimulating factor mRNA remained high at 120 h after exposure in the liver but the levels of interleukin-1beta and Cathepsin L gradually decreased to an expression level equal to or less than the sham group. Our data suggest that the innate immune and hepatodetoxification responses in oil-fed fish were induced at the initial stage of exposure to the IHCO at the same time but several immune-related genes decreased to less than that of the sham group after the initial stage of response. Therefore, immune disturbances in fish exposed to IHCO may allow the pathogens, including the infectious diseases, to more easily affect the oil exposed fish.
Assuntos
Citocinas/metabolismo , Peixes/fisiologia , Imunidade Inata , Fígado/enzimologia , Petróleo/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Citocinas/genética , Comportamento Alimentar , Feminino , Peixes/genética , Peixes/imunologia , Inativação Metabólica , Fígado/efeitos dos fármacos , Masculino , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Espectrofotometria/veterináriaRESUMO
An increase in the use of ROVs for in-water hull cleaning (IWC) has led to the need to understand the risks to the marine environment posed by the release of IWC effluents. The primary objective of this research is to investigate the characteristics of wastewater generated during IWC, specifically concerning suspended solids (SS) and metal concentrations, and their release rates and total load to the environment. The IWC effluents contain substantial amounts of SS and metals, with Cu and Zn being the most prevalent. These metals are predominantly associated with fine antifouling paint particles, posing a potential risk of secondary pollution upon release into the marine environment. While the treatment systems demonstrated effectiveness in reducing SS and particulate metals, achieving complete removal of dissolved and particulate metals below ambient levels proved to be challenging. To mitigate environmental risks, this study proposes, based on the particle size analysis, the implementation of multistage filtration systems with an optimal filtration pore size for the effluent treatment. In conclusion, we highlight the potential environmental risks of IWC activities. As most metals have a strong affinity towards particles in wastewater, effective removal of particles is essential to alleviate environmental stress at IWC sites.
RESUMO
Unmanaged disposal of wastewater produced by underwater hull cleaning equipment (WHCE) is suspected to induce toxic effects to marine organisms because wastewater contains several anti-fouling compounds. To investigate the effects of WHCE on marine copepod, we examined the toxicity on life parameters (e.g. mortality, development, and fecundity) and gene expression changes of Tigriopus japonicus as model organism. Significant mortality and developmental time changes were observed in response to wastewater. No significant differences in fecundity were observed. Transcriptional profiling with differentially expressed genes from WHCE exposed T. japonicus showed WHCE may induce genotoxicity associated genes and pathways. In addition, potentially neurotoxic effects were evident following exposure to WHCE. The findings suggest that wastewater released during hull cleaning should be managed to reduce physiological and molecular deleterious effects in marine organisms.
Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Fertilidade , Poluentes Químicos da Água/metabolismoRESUMO
This is the first report to evaluate the potential effects of microplastics (MPs) on wild wharf roaches (Ligia exotica) in a shoreline habitant. L. exotica is an important plastic detritus consumer in coastal area. A survey was conducted from May to June in the years 2019 and 2020 in two South Korean nearshore sites: Nae-do (as MPs-uncontaminated) and Maemul-do (as MPs-contaminated). MPs (>20 µm in size) were detected highly in gastrointestinal tracts of the L. exotica from Maemul-do, at an average level of 50.56 particles/individual. They were detected in much lower levels in the L. exotica from Nae-do. at an average rate of 1.00 particles/individual. The polymer type and shape were dominated by expanded polystyrene (EPS, 93%) and fragment (99.9%) in L. exotica from Maemul-do. Especially, Hexabromocyclododecanes, brominated flame retardants added to EPS, have been detected highly in L. exotica from Maemul-do (630.86 ± 587.21 ng/g l. w.) than those of Nae-do (detection limit: 10.5 ng/g l. w). Genome-wide transcriptome profiling revealed altered expression of genes associated with fatty acid metabolic processes, the innate-immune response-activating system and vesicle cytoskeletal trafficking in L. exotica from Maemul-do. The activation of the p53 signaling pathway (which is related to proteasome, ER regulation and cell morphogenesis) is likely to be involved in the EPS-uptake of wild L. exotica. Four neurosteroids were also detected in head tissue, and cortisol and progesterone concentrations differed significantly in L. exotica from Maemul-do. Our findings also suggest that resident plastic detritus consumer might be a useful indicator organism for evaluating pollution and potential effects of environmental microplastics.
Assuntos
Cyprinidae , Isópodes , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Multiômica , Poliestirenos/metabolismo , Monitoramento Ambiental , Poluentes Químicos da Água/análiseRESUMO
Thioredoxins (TRxs) are a family of small evolutionarily conserved proteins that are essential for the maintenance of cellular homeostasis. Two TRx homologue cDNAs were isolated from a black rockfish concanavalin A (Con A)/phorbol myristate acetate (PMA)-stimulated leucocyte cDNA library and named BrTPx1-1 and BrTPx1-2. As compared with other known TRx peptide sequences, the most conserved regions of both BrTRx1-1 and BrTRx1-2 peptides were found to be the redox-active site Trp-Cys-X-X-Cys (WCXXC). The TRx present in most species is a TRx1-2 protein with a Cys-Pro-Gly-Cys (CPGC) active site. However, in the larger 13 kDa BrTRx1-1 protein, a Cys-Pro-Pro-Cys (CPPC) active site was identified. Here, we report the identification of a new member of the TRx protein family from the teleost black rockfish, which defines a new subclass of 13-kDa TRx1-1 proteins. Phylogenetic analysis indicated that both BrTRx1-1 and BrTRx1-2 were grouped with other vertebrate TRx1 peptides. BrTRx1-1 expression was strongly induced in peripheral blood leucocytes (PBLs) 12-24 h following Con A/PMA stimulation, with peak expression at 24 h post-stimulation. BrTRx1-2 was induced in PBLs after stimulation with lipopolysaccharide (LPS), Con A/PMA, or poly I:C at 24 h. The BrTRx1-1 gene was predominantly expressed in the liver and gills, while BrTRx1-2 was expressed in PBLs and gills. After treatment with a high concentration (10 µg/mL) of rBrTRx1-1 or rBrTRx1-2, kidney leucocytes exhibited increased cell proliferation and viability under oxidative stress.